COMMERCIAL - IN CONFIDENCE
	National Spine
	
External Interface Specification: Part 2 MHS
	Issue 11.6
24/4/2015

NHS CFH National Spine

	External Interface Specification: Part 2 MHS

Issue 11.6
24/4/2015
Document Control

	Title
	2087 External Interface Specification: Part 2 MHS

	Author
	Joseph Waler

	Doc Ref
	2087 EIS11.6--Part 2--MHS.doc

Note: The document history is held in part one of this document.

Table of Contents

6Part 2
Message Handling Service

62.1
Overview

62.1.1
Version Management

72.2
Introduction

102.3
MHS Modes

112.4
HL7 Wrappers and Their Behaviour

112.4.1
HL7 Forms of Operation

122.4.1.1
State Exchange Form

152.4.1.2
Remote Invocation Form

172.4.2
HL7 Message Payload

182.4.3
SDS OIDs in HL7 Wrappers

192.4.4
Control Act

192.4.5
Application Acknowledgement

202.4.6
Version Management

202.4.7
Wrapper Errors

222.5
ebXML Mode

222.5.1
Version Management

222.5.2
Message Processing Behaviour

252.5.3
Interface Contract Properties

292.5.4
Message Content

302.5.4.1
Header Container

302.5.4.2
Attachments

342.5.5
ebXML Message Header

342.5.6
Manifest Element

342.5.7
MHS Addressing

342.5.7.1
Logical Architecture

382.5.7.2
Registration

392.5.7.3
Address Resolution and Binding

402.5.7.4
Intermediary Addressing

412.5.7.5
Addressing Elements

422.5.7.6
Supported Deployment Topologies

432.5.8
ebXML Mode: Pseudo HL7 Messages

432.5.8.1
Pseudo-HL7 SOAP Message sample

462.6
MHS Web Service Mode

462.6.1
Overview

472.6.2
Version Management

472.6.3
Web Services Mode Header

502.6.4
Web Service Mode: HL7 messages

502.6.4.1
HL7 Web Service Header Elements

512.6.4.2
HL7 SOAP Body

522.6.4.3
Faults

522.6.4.4
HL7 SOAP Message sample

542.6.5
Web Service Mode: Non-HL7 Services.

542.6.5.1
Non- HL7 Web Service Header Elements

552.6.5.2
SOAP Body

562.6.5.3
Faults

562.6.6
Web Service Mode: Pseudo HL7 Web Services.

572.6.6.1
Pseudo-HL7 Web Service Header Elements

582.6.6.2
HL7 SOAP Body

582.6.6.3
Faults

592.6.6.4
Pseudo-HL7 SOAP Message sample

602.6.7
MHS Behaviour

612.6.7.1
Sender Behaviour

612.6.7.2
Receiver Behaviour

622.7
SOAP Binding

632.7.1
General SOAP Errors

632.8
Transport Protocol Bindings

632.8.1
HTTP Bindings

652.8.2
Network Protocols

652.9
Other Protocols

652.9.1
Distributed Time

652.9.2
DNS

Part 2 Message Handling Service

2.1 Overview

This section of the specification describes the behaviour, protocols, message formats, and service contracts that represent an MHS node. A Message Handling Service (MHS) is a software component (or system) that is responsible for handling all XML-type messages sent between applications. All senders/receivers of NHS CFH XML document MUST implement an MHS. An MHS supports both HL7 and non-HL7 XML. This distinction is made as each type has differences in processing requirements.
MHS provides 2 modes of operation; ebXML mode, and web service mode. Each mode varies in behaviour and header constructs.

This specification is based on [HL7-ebXML] and [HL7-WS], but not wholly conformant with them. NHS-specific changes have been required due to specific needs.
Please note the following on nomenclature. [ebXML-MS] uses the term Message Service Handler (MSH) to describe an implementation of [ebXML-MS]. The term used in this specification is MHS. The difference is to enforce the fact that MHS includes both ebXML MSH and web service functionality. When this specification uses the term MSH, it is specifically referring to [ebXML-MS] only.
2.1.1 Version Management

This specification specifies MHS interfaces that are compatible with an MHS defined in [EIS5.5], as well as for MHS built to the specifications in this document. However, messages generated to the interface are not guaranteed or even intended to be "byte for byte" identical to the messages returned by any previous release. Such differences might include:

· Use of default namespace declarations and namespace prefixes

· Inclusion of optional attributes such as some HL7 'structural' attributes

XML based technologies enable defined data-structures to be passed between "open" MHS implementations. For the message handling systems to inter-work, they must comply with a number of specifications and "XML schema", which define the structure, type and format of data to be inter-changed.

XML compliant tools uniquely interpret the XML processing and rules for a given schema. As a result of this, there is a high probability that "messages" sent from one MHS may not be "byte for byte" identical with those from another MHS or even a previous release of the same system, even though the messages are all compliant with the overall XML Schema. Given that the software technology varies at the "byte for byte" level, it is crucial that all systems are compliant at the Schema level to prevent problems with inter-working and "backwards compatibility".
2.2 Introduction

An MHS node is a logical component that implements the MHS specification described in this specification. It is responsible for moving XML messages from one system to another within a distributed network environment. Messages are moved from an application that requires the use of an external service (such as and LSP application) to a system that implements the service (such as EBS, PDS, and LRS). MHS nodes are involved in that interaction. This specification concerns itself with the protocol (and behaviour) between MHS nodes, not the application to MHS protocols.

An MHS plays three roles:

· Sender nodes. Nodes that initiate the sending of a message to another node. When describing ebXML processing the term “FromParty” is synonymous with the term “Sender”.
· Receiver nodes. Nodes that receive the message and mediate its processing. When describing ebXML processing the term “ToParty” is synonymous with the term “Receiver”.
· Intermediary nodes. Nodes that know how to route messages between other MHS nodes.

Sender and Receiver are logical roles performed by an MHS node. Two physical MHS nodes are likely to implement both roles in the course of message exchange. In Figure 2‑1, for example, Business system A requests its MHS to send a request to a service on National System 1. MHS A and MHS 1 play the roles of Sender and Receiver nodes respectively. National System 1 then returns the information requested via its MHS (MHS 1); as such the Sender and receiver roles are reversed. The separation of MHS into Sender and Receiver roles is important. The roles represent responsibilities in message exchange; message contracts, reliability, and security.
MHS Sender/Receiver roles should be contrasted with HL7 application roles. In Figure 2‑1, Business System A and National System 1 would play HL7 application roles.

[image: image1.emf]National System 1 MHS 1 Business System A MHS A

1 : \Send Request\

2 : \Send Request\

3 : \Process Request\

4 : \Send Response\

5 : \Process Response\

Figure 2‑1. MHS Sender/Receiver Roles.
MHS nodes also are characterised by their relationship with national services. Nodes either “own” the final destination to a national service (that is, it is the last MHS-hop to the service) or are clients of a national service.

An MHS node sits in a layered architecture with respect to the health application sending/receiving messages, and the transport stack that supports MHS communications. That is, an application that wishes to send a message to a national service will compose a message compatible with the service interface and call its local MHS to request the message be sent to the service. The MHS will wrap the service message in the required MHS protocol headers and send it to an appropriate transport stack (one that is compatible with the sender) for transmission over a physical network. At the other end, the receiving MHS will obtain an MHS message from the communications stack, strip off its wrapper(s), and pass the message to the service for processing. This layered architecture is shown in Figure 2‑2.

[image: image2]
Figure 2‑2. Layered Architecture of the MHS.

This specification describes the behaviour of an MHS, and the protocol between the MHS nodes. Also, a binding is provided to lower layer protocols. The definition of the interface between the application and the MHS is out-of-scope for this specification and is an internal concern
.
From the protocol perspective Figure 2‑2 shows a single hop model. However, this can be extended to multi-hop with the inclusion of 1 or more intermediary MHS nodes between the Sender and Receiver. All messages from business applications to national services MUST pass through the Spine MHS node for forwarding to the requested service.
The MHS MUST support an HTTPS transport protocol binding for sending and receiving messages.
Each MHS node implements common behaviour. At an abstract level the MHS provides the following internal services (see Figure 2‑3):

· Header processing. The creation and processing
 of (ebXML or web service) header elements. This also includes the parsing of header elements, the interaction with contract properties, and the passing of elements to and from the message service interface.

· Message packaging. The building of the ebXML and web service envelopes, including the ebXML SOAP attachment structure.

· Security. No message level security behaviour is required.

· Reliable message processing. Responsible for the delivery and acknowledgement of reliable messages. This component deals with persistence, retries, error notification, and acknowledgement of messages requiring reliable delivery.

· Error handler. Response for the reporting of errors encountered during MHS processing, including errors across the service interface but not including errors occurring within the application.

· Routing. Responsible making any routing and address mapping decisions required.

· MHS Service Interface. The abstract interface between the MHS and a system that is sending or receiving messages.

· Transport Binding. The abstract interface between the MHS and the various protocol stacks.

[image: image3.wmf]MHS

HL7Processor

HealthSystem

HeaderProcessing

«interface»

MHSServiceInterface

MessagePacking

SecurityService

ReliableMessageService

ErrorHandler

«interface»

TransportBinding

HTTP

Routing

Figure 2‑3. MHS Components.

The MHS supports configurable Quality of Service (QoS) through interface contract properties. This “MHS configuration” is provided through the notion of interface contracts. Contract properties are stored in the SDS. See Part 5 of this specification. Detail on contract properties is provided in 2.5.3 Interface Contract Properties.
2.3 MHS Modes

An MHS node operates in two modes; ebXML Mode, and Web Service Mode. As their names imply, they represent two different structural and behavioural specifications within the general SOAP structures and behaviours.
The ebXML implementation is based (partly) on the HL7 Transport Specification—ebXML, Release 1. The Web Services is based on the HL7 Web Service SOAP/WSDL profile [HL7-WS].

While both modes overlap functionally, the [BT-Mbeh] specification provides specific behaviour for message interactions. The selection of modes associated with message interactions is provided in Part 3 of this specification. An interaction may either be implemented using ebXML or Web Services, but not both.

The ebXML mode is defined in 2.5 ebXML Mode.ebXML Mode, while the web service mode is defined in 2.6 MHS Web Service Mode.
2.4 HL7 Wrappers and Their Behaviour
This section considers a number of HL7 behaviour aspects that relate to MHS processing. Where possible, this section does not attempt to refer to, or override, behaviour already defined by HL7 or NHS CFH. Should a conflict exist, NHS CFH behaviour takes precedence.

As well as a payload, HL7 messages include a transport wrapper, a Control Act wrapper. The definition of these HL7 message wrappers is the responsibility of the Authority, and is published in the MIM.

The HL7 processing engine (HL7 Processor in Figure 2‑3) is a logical component within all environments (although, not necessary within individual systems) that send and receive HL7 interactions. The Processor is responsible for marshalling and unmarshalling HL7 messages. This processing includes the wrappers. This component is considered logically separated from the MHS, and not the subject of MHS behaviour.
This section describes how the HL7 wrappers and ebXML elements interoperate, and the behaviour expected by MHS nodes in ebXML and Web Service modes.
2.4.1 HL7 Forms of Operation

The HL7 layer uses the underlying MHS protocols and message formats to send and receive messages. There is a delineation of responsibility between the MHS and HL7 layers. The MHS layer provides the services to support the exchange of business messages. The HL7 layer provides the ability to define the structure and meaning of those business messages. This scopes which ebXML standards should be implemented within NHS CFH. The NHS CFH ebXML supports the Message Service standard and partially supports the Collaboration Profile standard. But, there is no current requirement to implement ebXML business process and modelling standards—as these would overlap with HL7 standards.

Request-response message exchange patterns are prominent with the HL7 interactions (although in some message domains the responses are optional and in others there are additional responses). The HL7 layer in the sender and receiver (and optionally the intermediary) implements a set of behavioural forms that define the responsibilities necessary to implement request-response interactions. The forms allow each HL7 processing role in the HL7 message exchange to understand how other HL7 processes will operate in given message exchange scenarios (both successful and exception).

These forms should not be confused with the ebXML behaviour patterns described in [BT-Mbeh]. As the layering would suggest, the HL7 forms are implemented by using specific ebXML message patterns. Both behaviours must work harmoniously together. Also, the forms described here do not mandate any physical separation between the HL7 and MHS layers; rather this is a logical separation.

This specification supports two HL7 form:

· State Exchange Form.

· Remote Invocation Form.

These forms describe mechanisms for HL7 message exchange behaviour with the Spine and are predicated on local behaviour models between the human actor and local system. The forms described here are abstract, and avoid mandating specific local implementation structures—or relying on specific implementation architectures. They are merely ways of conceptualising the end-to-end implementations to allow precise definition of the exchange pattern. These forms, also, do not imply any mandatory behaviour on MHS implementations.

2.4.1.1 State Exchange Form

The state exchange form (SEF) is used by HL7 business interactions that are required to synchronise business processes running in separate NHS CFH organisations. That is a business process engine in one organisation aligns the state of its process with a business process engine in another. At the point of alignment business process steps are externally visible to the other organisation. Business state is transferred between the externally visible processes. The individual state machines in each organisation execute independently (and hence are loosely coupled) and merely synchronise at specific points.

Figure 2‑4 shows an example of the SEF. The sequence diagram shows part of a patient administration process at a NHS organisation. The organisation reaches a point in its process whereby it exchanges state with the Spine (in this case, the state is represented in a PDS Update Patient message type).

This example considers sending and receiving systems at a macro level. Each system will contain HL7, MHS, and other components required to implement its functionality. The HL7 and MHS layers cooperate in exchanging HL7 messages. The form uses the generic terms of “Sender” and “Receiver”. Where ebXML or Web Service behaviour is referenced, this is logically the responsibility of the MHS layer. Where HL7 behaviour is referenced, this is logically the responsibility of the HL7 layer.

[image: image4.emf]Admin System Spine

Administrator : Admin

2 : \Read Local Patient record\

1 : \Update Patient\

3 : \Validate Update\

4 : \Update Patient\

5 : \Sync State\ (\HL7 Patient\)

6 : \Update Patient\

7 : \State Sync\ (\HL7 Reply\)

Figure 2‑4. State Exchange Form Scenario.
The characteristics of the basic flow defined above are as follows:

· A human actor is responsible for changing patient details
, and notifies this change to the Admin system by a synchronous request/response. The actor receives an immediate response to the update request.

· The actor is NOT tied to the HL7 state exchange interaction between the Admin system and the Spine.

· This is predicated on the fact that the Sender (the Admin system) has a local view of patient (which must also be aligned with the national view).

· The state machine in the Sender synchronises state (which consists of the updated patient information) with the Spine only once its internal Update Patient transaction is complete. The Sender must use both an HL7 processor layer and an MHS to send the state.

· Any recoverable HL7 exceptions that occur within the Spine are dealt with by various internal retry strategies without informing the Sender. The implication being that the Sender does not require an immediate response.

· Any unrecoverable HL7 exceptions that occur within the Spine are thrown back to the Sender. As the Sender no long has physical contact with the human actor, the Sender is responsible for determining the actions required to correct the error and resend it. This is a local implementation concern.

The following exception behaviour scenarios are defined for SEF:

	Exception Scenario

(Numbers relate to interactions on Figure 2‑4)
	Exception Behaviour

	Unable to exchange state (at step 5).
	· The Sender uses ebXML retry behaviour until an ebXML ACK is received.

· The Sender MUST use the same ebXML MessageId on these retries (based on the correct behaviour relating to PersistDuration.

	Sender ebXML retries expire without an ACK being received (at 5).
	· The System MAY use “slow HL7 retry” mode (see discussion in bullet list below).

· Bear in mind that the message could still have made it through to the Spine (and is being processed), while the ebXML ACKs have been lost.

	Can’t update the patient record due to the availability of the service (at 6).
	· This is a recoverable error as far as the Spine is concerned. That is, the service will recover, and executing retries is likely to generate a service response. In this case the Spine MUST NOT return the error to the Sender.

· The Receiver retries the operation until it does succeed; that is, the Spine will always inform the sender of the outcome of the operation.

· The response may not be returned within a predicted response time window.

· The Receiver will return three types of responses; a business success, a business failure (or any other unrecoverable failure), and an “out-of-band” failure
.

	Can’t update the patient record due to an error caused by the state provided by the Sender (at 6).
	· The Receiver responds to the Sender with the appropriate HL7 error.

· The System must now determine a strategy for handing the error; given that the actor is no longer “connected” to the transaction.

	HL7 response not received (at 7).
	· While the Sender of the original state exchange request has confidence that the other party (the original receiver) has accepted the exchanged state, it has not received an ebXML message containing the HL7 response.

· This may be due to the “new” Sender being in recovery.

· The new Sender MUST retry sending the response until successful.

· The original Sender SHOULD NOT send another HL7 request. It SHOULD wait for the response.

· At some point, however, the original Sender will need to submit the request again. However, the likelihood is that the Receiver HL7 layer will eliminate the request as a duplicate and return an appropriate business fatal error (if it is still processing the request, rather than having “lost” it). The original Sender MUST not infer that the Receiver processed the original message successfully (it may have originally sent a business error response). Handling this at the original sender is implementation specific; however it is likely that a human actor is required to mediate.

The following guidance on retry behaviour is provided to HL7 senders and receivers:

· Retries are linked to duplicate elimination processing; both at the ebXML and HL7 layer. ebXML eliminates duplicates on the ebXML MessageId, while HL7 uses its message/id—or payload-specific ids— for elimination. Wrapper and ebXML MUST be treated independently when performing duplicate elimination.

· Receivers MUST implement ebXML and SHOULD implement HL7 duplicate elimination.

· Senders SHOULD implement HL7 “slow retry
” behaviour (as apposed to sending a delivery failure notification to another layer). This allows the Receiver’s infrastructure to recover gracefully without constantly having to deal with Sender retries. “Slow retry” is defined as a form of graduated (possibly exponential) retry behaviour; that is, after each ebXML request sequence has failed, the Sender retries after an increasing time interval. The following rules for setting message ids MUST be followed:

· The rule relating to PersistDuration defined in [ebXML-MS] 6.4.6 MUST be followed in setting the ebXML MessageId.

· The HL7 processor MUST use the same HL7 Message/Id/@extension (or appropriate payload ids).

· The Sender SHOULD cater for the situation, when in “slow retry” mode, an asynchronous response is returned for a previous request. In this scenario, duplicate failures MAY be returned for succeeding requests.

2.4.1.2 Remote Invocation Form

The Remote Invocation Form (RIF) is derived from standard client-server methods. In this case, however, there may be multiple servers engaged in completing the “transaction”. The Spine considers the intermediary servers (such as the Admin System in Figure 2‑5) as HL7 “proxies” with appropriate caching strategies employed. This model is inherently synchronous from the perspective of the human actor; that is, the actor is “blocked” waiting for a response.

[image: image5.emf]Admin System

Administrator : Admin Spine

1 : \Search Patient\

2 : \Validate Search Criteria\

3 : \Check Local cache of Patient

records\

4 : \Search Patient\

5 : \Retrieve Patient\

6 : \Patient Response\

7 : \Update Cache\

Figure 2‑5. Remote Procedure Form Scenario.
This approach implies that the Receiver (the Spine in this scenario) and the local servers are tightly coupled (from a message exchange and operational perspective) to the actor’s transaction request. Unless the patient record exists in the Sender’s cache and is up-to-date (it may issue a “check cache” request against the Spine to verify this—which would also be in RIF) the system must access the Spine for the appropriate record.

The key aspect of exception (and operational) behaviour is that the actor is materially affected by any server-related problems—i.e. they notice the time to respond. The following exception behaviour is defined for the RIF:

	Exception Scenario

(Numbers relate to interactions on Figure 2‑5)
	Exception Behaviour

	Can’t call service, or service throws an exception (at 5).
	· All exception types (both recoverable and unrecoverable) are treated this way.

· The Receiver responds with an appropriate failure message.

· The local system (or actor) fixes the problem and resubmits the request.

· This exception handling approach is straight forward as the RIF implies that a human actor can handle the exception as they are directly involved in the invocation.

	Receiver doesn’t respond (at 6)
	· If the Receiver can’t respond due to the destination being unavailable, it discards the message. The Sender MAY resend the message.

· If the Sender times out the response, it MAY resubmit the request.

· The state of the “transaction” at the Receiver is unknown to the Sender. The Receiver may have completed the transaction (i.e. did not roll it back due to this error), or the Receiver may not have performed the transaction (or rolled it back).

· If the Sender resubmits the message, the message has been applied at the Receiver, and the transaction is an update, the Receiver MUST eliminate the duplicate and advise the Sender of the elimination.

· If the Sender resubmits the message, the message has been applied at the Receiver, and the transaction is a query, the Receiver SHOULD execute the transactions again without recourse to duplicate elimination.

· If the message was not applied at the Receiver then duplicate elimination MUST not be applicable for a resubmitted message. That is, the message SHOULD be processed as if it has never been encountered before.

The following guidance on retry behaviour is provided to HL7 senders and receivers:

· Retries may occur before the Sender has responded to the actor (the impatient retry), as a result of the Sender responding with an error asking the actor to retry, or when the Sender deems it appropriate to retry without actor intervention. The third scenario may occur in event of an intermittent network or receiver failure (i.e. where resilient components can be used immediately).

· The Sender SHOULD send the message with the same HL7 Message/Id to ensure that receiver duplicate elimination is performed if necessary. This is most likely necessary when the client-to-server call times out—where the Receiver is still processing the original request, for instance.

· The Sender MAY send the retry with a different HL7 Message/Id/@root. This implies that the Sender has asserted that the Receiver will not perform duplicate elimination.

2.4.2 HL7 Message Payload

The HL7 Processor is responsible for building the Message Payload structure for out-bound messages, and interpreting them for in-bound messages.
The wrapper includes some elements that also exist in the ebXML and Web Service headers. The following table provides the mapping between ebXML and HL7 header information. The wrapper root is referred to as “MCCI” in the table. The mappings below differ from [EIS5.5]. The missing mappings are no longer required/supported for Release 2008-B MHS implementations.
	HL7 Wrapper Element
	ebXML Profile Element
	Generation Notes

	/MCCI/InteractionId/@extension
	/eb:MessageHeader /eb:Action
	Copied directly from the wrapper.

	/MCCI/InteractionId/@extension
	/Manifest/Schema@version
	The version number of the HL7 message is obtained from the last 2 characters of the interactionId extension.

	“HL7”
	/Manifest/Reference/hl7ebxml:payload@style
	Literal

	“XML”
	/Manifest/Reference/hl7ebxml:payload@encoding
	Literal

	“3.0”
	/Manifest/Reference/hl7ebxml:payload@version
	Literal

The /MCCI/id/@root and the /eb:MessageHeader/MessageData/MessageId MAY be different; thus supporting different duplicate elimination behaviour timeout intervals in each layer.

The construction of the header elements when HL7 messages are sent using web service mode is defined in 2.6 MHS Web Service Mode.

2.4.3 SDS OIDs in HL7 Wrappers

HL7 messages carry a number of SDS OIDs, predominantly in the HL7 II type root attribute. The following table associates a number of HL7 properties with their relevant SDS attribute and class. This table also provides the OIDs that exist in the root attribute. The final column (OID Type) describes what the SDS OID represents; either the entire SDS class or a specific attribute within the class.
	Data Item
	LDAP Class
	LDAP Attribute
	OID to be used in HL7 Messages
	OID Type

	
	
	
	
	LDAP Class
	LDAP Attribute

	User’s Unique Id
	nhsPerson
	uid
	1.2.826.0.1285.0.2.0.65
	(
	

	User’s Full Name
	nhsPerson
	cn
	2.5.4.3

	
	(

	Role Profile Code
	nhsOrgPersonRole
	uniqueIdentifier
	1.2.826.0.1285.0.2.0.67
	(
	

	Job Role Code
	nhsOrgPersonRole
	nhsJobRoleCode
	1.2.826.0.1285.0.2.1.104
	
	(

	Job Role Name
	nhsOrgPersonRole
	nhsJobRole
	1.2.826.0.1285.0.2.1.44
	
	(

	SDS Organisation Code
	nhsOrg
	nhsIdCode
	1.2.826.0.1285.0.1.10
	
	(

	SDS Organisation Name
	nhsOrg
	o
	2.5.4.10

	
	(

	Accredited System Identifier
	nhsAs
	uniqueIdentifier
	1.2.826.0.1285.0.2.0.107
	(
	

	Message Handling System
	nhsMhs
	uniqueIdentifier
	1.2.826.0.1285.0.2.0.108
	(
	

	Work Group
	nhsWg
	uniqueIdentifier
	1.2.826.0.1285.0.2.0.109
	(
	

	Workstation ID
	Not in SDS
	Not in SDS
	
	-
	-

2.4.4 Control Act

The ControlAct contains message author information. There is no structure in ebXML to carry this information. Furthermore, the use of ControlAct may vary with specific messages. Therefore the MHS node MUST consider this as completely opaque, and no mapping is required.
The MIM requires that a number of query message types return a specialised ControlAct containing a QueryAck object. For Spine query services, the contents of this object are constructed as follows:

queryResponseCode; If Acknowledgement.typeCode <> “AA” then queryResponseCode = “ID” otherwise queryResponseCode = “OK”

2.4.5 Application Acknowledgement

The ApplicationAcknowledgement structure (a specific wrapper message structure that exists in all response messages) is used by the receiving HL7 processor to indicate to the sending HL7 processor that it has processed the HL7 payload—this is, essentially an application level acknowledgement and is therefore completely transparent to the MHS. This structure is sent as a specific HL7 interaction response wrapper. There is no MHS behaviour to be implemented to handle an ApplicationAcknowledgement element.
The generating HL7 processor MUST ensure that business and technical errors encountered during processing of the payload (and described in the returned payload elements) are flagged AcknowledgementDetail/@TypeCode element as “AE”.
2.4.6 Version Management

Version management is introduced into the messaging domain from 2005-5. The HL7 domains that were supported in P1R1 (EBS, LRS, PDS) have since had additional functionality and changes. Due to these changes P1R1 implementations are not forwards compatible with Release 2005-5/2006-A/2006-B messages. Different versions of HL7 messages are indicated by the last 2 characters of their InteractionId. Each version of an interaction is therefore a unique message. HL7 Processors MUST use the InteractionId to perform any version management functions. HL7 receivers SHOULD also populate the versionCode element in the SendMessagePayload to perform a further level of check. The versionCode is asserted by the sender to inform the receiver of the version of the MIM used to generate the message. While the versionCode MAY be used in specifically agreed circumstances, the versionCode SHOULD NOT be used as a precise indication of the version of the message.
HL7 processors that are service providers MUST be backwards compatible; that is MUST be able to implement older versions of the messages. Service clients MAY support Release 2008-B messages.

The service provider MUST respond to P1R1 requests with P1R1 responses. Similarly, implementers of this specification MUST use message collaborations described in Section 3 of this document.
The accredited version of a message registered against an accredited system is available from the SDS accredited system object. The SDS holds both the accredited sending and receiving messages for an accredited system. This allows the service client to determine the version of the message that will be supported by the service provider.

MHS nodes MUST support all InteractionIds for all Accredited Systems for which they act as proxy. This may mean supporting both P1R1 and Release 2008-B MHS behaviour.
2.4.7 Wrapper Errors

The Receiver HL7 processor may throw exceptions when processing the HL7 wrapper. In cases where these errors can not be handled by the Receiver, they MUST be thrown back to the Sender. The general structure for throwing such errors is the Application Acknowledgement interaction—MCCI_IN010000UK13
. The Receiver MUST include all message processing errors in the AcknowledgementDetail collection.

All HL7 processors MUST be able to accept an Application Acknowledgement in response to any MIM request
. The MHS representing the HL7 Processor MUST have an MHS entry in the SDS for the Application Acknowledgment attached to each service supported by that MHS. The contract properties to be configured against the Application Acknowledgement are defined in [BT-4258].

The Receiver will return the MCCI_IN010000UK13 using the following properties;

· Service MUST be set to the service of the originating message;

· Action MUST be set to MCCI_IN010000UK13 (or MCCI_IN0000UK12, in the case of ETP and GP2GP version 1.5).

· The contract properties for the exchange and the CPAId are obtained from the SDS MHS class of originator’s PartyId and the service and action defined above. Implementers should note that this could mean that the message behaviour pattern used for the originating message is different from the pattern used for the Application Acknowledgement.

An Application Acknowledgement MAY also be sent by an Intermediary when it has detected an HL7-layer exception though this is will currently only occur on Multi-hop Intermediary Reliability messages. The Intermediary will generate an MCCI_IN010000UK12 or MCCI_IN010000UK13 (depending on the acknowledgement associated with the interaction that generates the exception), and will be returned to the sender using the Intermediary’s ebXML PartyId and Accredited System Id. Contract properties and message behaviour for returning the application acknowledgment is defined above. Where appropriate, HL7 wrapper errors MAY also result in SOAP faults. Specifically for ASID failures on No-Party Reliability and Forward Express patterns where MCCIs are not appropriate, SOAP faults will be returned. MCCIs are considered inappropriate for behaviour patterns which do not normally require the intermediary to interrogate the payload and patterns which may carry non-HL7 messages.
The set of errors that can be thrown by an MHS is described in Part B of this specification. The following is an example of an access control error returned by the Spine.

<acknowledgement typeCode="AR">
<acknowledgementDetail typeCode="ER">
<code code="900" codesystem="2.16.840.1.113883.2.1.3.2.4.17.32" displayName="Access Control Violation"/>

</acknowledgementDetail>
<messageRef>
<id root="11111111-65D3-EC42-BC31-62522532BC5D" />

</messageRef>
</acknowledgement>
2.5 ebXML Mode

This section describes the protocol and MHS behaviour for the ebXML Mode.

A sending system (and the HL7 engine) wishing to exchange an HL7 message with the Spine will build HL7 wrappers and payload, build MHS elements, include these two components within a SOAP envelope, and transport the full message over specific protocol binding.

The following sub-sections describe the behaviour, formats, and protocols to be implemented by each MHS node. This information is drawn directly from [ebXML-MS], with the exception of the differences noted in Part A of this specification.

2.5.1 Version Management

P1R1 and Current Live Releases versions of ebXML mode are considered discrete. Where an MHS implementation is required to process a P1R1 interaction, it MUST use the behaviour described in [EIS5.5]. Current Live Releases MUST use this version of the specification.
2.5.2 Message Processing Behaviour

An MHS, in ebXML mode, is an instance of the [ebXML-MS] specification. However, it is not required to implement all ebXML protocols and behaviours described. [BT-Mbeh] provides the ebXML profiles for MHS implementations. It describes the specific ebXML behaviours required for MIM interactions. An MHS node MUST implement all [ebXML-MS] behaviours as profiled by [BT-Mbeh].
The following points highlight specific behaviour of MHS implementations where [ebXML-MS] provides alternatives:

1. All ebXML ACKs MUST occur over the same transport connection. The exception is the Multi-hop End-Party Reliability pattern [BT-Mbeh], where ebXML ACKs are sent asynchronously from ToParty to FromParty. ebXML messages containing an Acknowledgement MUST NOT be sent with payload.
2. An ebXML business document flow
 is terminated when acknowledgments are successfully received by a sending MHS node. The ebXML acknowledgement indicates to the sending MHS that the related message in the flow will/was delivered to the next layer. This implies that no additional ebXML message can be sent associated with this one-way message transfer. The receipt of an ebXML ACK means that the Sender can remove state associated with the one-way message transfer. For further details on HL7 layer processing see 2.4 HL7 Wrappers and Their Behaviour and [BT-Mbeh].

3. MHS node MAY send ebXML an ErrorList (see Part A of this specification) containing a highestSeverity of “Error”. This is dependent on behaviour described in 2.4 HL7 Wrappers and Their Behaviour and [BT-Mbeh].
An MHS MUST NOT extend the ebXML errorCode namespace with implementation-specific errors without prior agreement from NHS CFH and BT. Implementation-specific errors MUST be reported under the error codes defined in section 4.2.3.4.1 of [ebXML-MS]. An MHS MAY use the Description element to report implementation-specific information.
Should an MHS receive an ebXML ErrorList with a highestSeverity of “Error” it MUST assume that the message in error can not be represented. That is, the problem MUST be handled by the sender of the message in error.

Should an MHS receive an ebXML ErrorList with a highestSeverity of “Warning” it MAY assume that the error is recoverable and that the message in error can be re-presented.
4. HL7 request-response interactions are sent using ebXML one-way exchanges. The Receiver MUST include the ebXML MessageId of the request in the RefToMessageId of the response. Additionally, the Sender MAY use the ebXML ConversationId to aid correlation over multiple HL7 interactions. The ConversationId is a mandatory ebXML element and MUST be populated by the sender. The Receiver MUST ensure ConversationId behaviour is honoured as per 3.1.3 of [ebXML-MS]. The definition of what constitutes a conversation is the role of the MIM. Note, also, that the upper layer (e.g. HL7 MessageRef/Id) elements are also available for this correlation.

5. The ebXML and HL7 MessageIds are discrete. There is no requirement that they be the same. See 2.4.2 HL7 Message Payload for a discussion on the support of separate message ids.

6. An intermediary node MUST return required acknowledgements (determined by the actor attribute (which is on the SOAP namespace) referencing nextMSH on the ackRequested element) on the same connection as the request.

7. An Intermediary MUST NOT send a message to the final receiver with two ackRequested elements, one targeted at nextMSH and the other at toPartyMSH. The Receiver MUST only respond to a toPartyMSH acknowledgement request. This implies that two acknowledgement messages will never be generated.

8. The Message Ordering module is NOT supported.

9. The Security module is NOT supported.

10. All message senders SHOULD have a binding or bindings for receiving ebXML messages that are sent separately under the Service “urn:oasis:names:tc:ebxml-msg:service” and the Action “Acknowledgment” and “MessageError”. Bindings are only required where the exchange pattern mandates asynchronous transmission of these actions.

These interactions have the following contract properties; RetryInterval = omitted; Retries = omitted; PersistDuration = omitted; DuplicateElimination = “never”; SyncReplyMode = “none” ; ackRequested = “never” ; Actor = omitted ; IsAuthentcated = “Transient”
11. ErrorURI is NOT supported.

12. Senders MUST support the receipt of SOAP faults in response to an ebXML request.

13. A Manifest element MUST always be used.

14. In a reliable intermediary exchange, each ebXML message sender MUST use the values of Retry and RetryInterval from the SDS to configure retry behaviour.

15. In an Multi-hop End-Party Reliability pattern [BT-Mbeh] exchange, the Sender (FromParty) SHOULD manage retries based on Retry and RetryInterval. Inter-intermediary to Receiver (ToParty) communications MUST NOT be retried on failure. Delivery failures between the intermediary and the Receiver MUST NOT be reported to the Sender.
16. MHS nodes MUST honour the behaviour of header extensions where SOAP:mustUnderstand= “1”.

17. MHS nodes MUST support [ebXML-MS] (version 2.0), and are not required to support any additional extensions to this specification—except those defined in this specification.
18. When a sender exhausts ebXML retries it MUST implement behaviour that is consistent with the HL7 behaviour modes, defined in 2.4 HL7 Wrappers and Their Behaviour.

19. CPAId MUST reference the SDS implementation of the contract properties. MHS implementations MAY use CPA agreements (based on [ebXML-CPA], however these are local to the MHS node and MUST be derived from contract property data held in the SDS. Contracts are not established between a sending and receiving Party, they are associated with the receiving party only.
20. ebXML Management Service (the ping/pong service) SHOULD be implemented by each MHS, with the exception of Spine. This service is used by the Spine where reliable messages can not be delivered to a receiving MHS during normal Spine ebXML retry processing. It is strongly recommended that any non 24*7 MHSs or MHSs with a significant chance of unavailability implement this service. The Spine will periodically “poll” the unavailable MHS using the ebXML Ping service to determine when a message could be redelivered. The duration between polls and the number of polls are configurable and non-linear, and can be executed over a number of days.
When an MHS receives a Ping, the response, a Pong, SHOULD represent the state of the entire MHS ebXML service for all messages supported by the MHS. That is, the return of a successful Pong will indicate that the MHS will successfully receive and reliably persist all messages, but does not necessarily signify that a receiving application is available. However, it is the responsibility of the implementer to determine how overall system state is represented as available or unavailable. The Pong MUST contain the RefToMessageId of the original Ping.
On receipt of a Pong, the Spine will resend the undelivered message(s). The message(s) will contain a new ebXML message id and timestamp, while the HL7 message id will remain the same as the original message. If a Pong is not received by Spine during the polling period, the Spine will action an administrator to determine the cause of delivery problems. The administrator is able to resend the message if the problem is resolved.
The Ping/Pong service is synchronous. It has the following contract properties; RetryInterval = omitted ; Retries = omitted ; PersistDuration = omitted ; DuplicateElimination = “never”; SyncReplyMode = “mshSignalsOnly” ; ackRequested = “never” ; Actor = omitted ; IsAuthentcated = “Transient”

The MHS is required to register this service/action within the SDS.
The implementation of the management service by the MHS REQUIRES conformance to the message id rule stated in 2.4.2 HL7 Message Payload.
An MHS that generates an ebXML error on processing a PING MUST send an ErrorList back using a Service of urn:oasis:names:tc:ebXML-msg:service and an Action of MessageError.

An MHS is deemed available to receive messages when it returns a PONG on the same HTTP connection as the PING. The PONG MUST NOT contain an ErrorList element. The HTTP status code SHOULD be in the 2xx range.
The MHS is deemed unavailable to receive messages when it returns an HTTP response that does not contain a PONG, or has an ebXML MessageHeader which does not have a Service of urn:oasis:names:tc:ebXML-msg:service and an Action of Pong. The HTTP status code of the response is not material in the assessment of the unavailability status. However it is RECOMMENDED that the HTTP status code SHOULD come from the 2xx range.
Examples of ping and pong messages can be found in section 8.1 of [ebXML-MS].
21. When resending acknowledgements an MHS is NOT REQUIRED to return original acknowledgement message as defined in [ebXML-MS] section 6.5.5. For performance reasons the MHS MAY reconstruct an acknowledgement message from the duplicate request.
22. The Message Status Service module is NOT supported.
2.5.3 Interface Contract Properties

The behaviour of MHS message processing is governed by contracted interface properties. These properties describe QoS and binding information for each message type. MHS properties defined here are a subset of those defined by [ebXML-CPA], and MHS implementations are only required to support these properties. Implementations that receive properties outside the defined subset MAY respond with an ebXML NotSupported error, or may ignore the properties without signalling.

While implementations MAY configure their interfaces via a CPPA conforming to [ebXML-CPA], such documents MUST be built from the properties defined in SDS.
In ebXML Mode the MHS makes direct use of the interface properties, using them to build ebXML message header elements. In Web Services Mode there is no notion of contracted behaviour, as such it operates in only one reliability mode, i.e. best effort.
The contract properties are defined during the message definition process. Properties will be agreed with both the Authority and service implementers. The intent of obtaining agreement between relevant parties is to ensure that the setting of properties does not adversely affect service level requirements. When agreed the properties are registered in the SDS. This is the sole source of agreed properties. [BT-4258] provides the current view of proposed contract property settings. This specification will be updated as new actions are added and as properties are refined.
Contract properties, the transport, and bindings are defined for each action (or Interaction in HL7 terms) and for each Party. The properties are held in the SDS against the ToParty MHS class and service/action (see Part 5 of this specification). The FromParty is required to use the CPAId of this contract property set when building a message.

Domains are separated, as appropriate, into 2 logical services for the purposes of maintaining consistent contract properties across request and response. In the scenario where the domain interaction model demands that the same action be sent under different message behaviour patterns (for example, MCCI_IN010000UK13 in PDS can be sent reliably on updates and unreliably on queries), the service is split.

For intermediary message exchange patterns the interaction between the FromParty and the Intermediary uses the contract properties obtained from the ToParty MHS class.

The definer of contract properties for service/actions is based on the following rules (all properties MUST exist within the constraints defined in [BT-Mbeh]):

· If there is a single domain service provider, the organisation contracted to implement the service is required to define contract properties.

· If there is no single domain service provider and the Spine is involved as an Intermediary, it is BT’s responsibility to define the contract properties.

· If there is no single domain service provider and the Spine is not involved as an Intermediary, then the Authority is required to provide the contract properties.

The property definer MUST communicate the properties to BT (for registration in the directory) 30 days before integration testing begins.

It is BT’s responsibility to define the CPAId for the contracts. The contract properties assigned to each service/action/ToParty are given a CPAId.
The following table describes the key interface contract properties. This specification refers to a subset of properties defined in [ebXML-CPA]. This subset includes the necessary properties to meet Release 2008-B messaging needs.

	Contract Property Component
	Description

	Service
	The value of the service property identifies the specific service expressed by the message. The service is defined within the NHS service name space and MUST be unique across the NHS service implementations.

Format: urn
This property is carried in the message as eb:Service. The enumeration for this property can be found in Part 3 of this specification.

	Action
	The value of the action property identifies the specific action expressed by the message. For HL7 messages this is defined by the value of the InteractionId/@extension attribute.

Format: String

This property is carried in the message as eb:Action.

	PersistDuration
	This property is the minimum length of time data from a reliably sent message is kept in persistent storage by a Receiving MHS node. If the PersistDuration has passed since the message was first sent, a Sender MHS MUST NOT send a message with the same MessageId.

Format: XML Schema duration type.

PersistDuration
 SHOULD be > (Retries+1)*Retry Interval

	RetryInterval
	This property indicates the minimum time a MHS will wait before retrying a send.

Format: XML Schema duration type.

This property is not included in the message.

	Retries
	This property indicates the maximum number of times a Sending MHS should attempt to redeliver an unacknowledged message using the same transport binding.

Format: Integer

This property is not included in the message.

	Duplicate Elimination
	This property determines whether the DuplicateElimination element will be included within the message. This drives the duplicate elimination behaviour of and MHS node.
Format:

· “always”. Every message must have DuplicateElimination set. The MHS node MUST eliminate duplicates.
· “never”. No message will have DuplicateElimination set. The MHS node MUST NOT eliminate duplicates.
· “perMessage”. The presence or absence of DuplicateElimination is determined on a per message basis.
This property is included in the message as DuplicateElimination.

	AckRequested
	This property determines whether the AckRequested element will be included within the message. This drives the behaviour of the ebXML acknowledgements.
Format:

· “always”. Indicates that every message sent over the channel must have an AckRequest element. Therefore an ebXML Acknowledgment MUST be sent.
· “never”. Every message must not be sent with an AckRequest. Therefore, an ebXML Acknowledgment MUST NOT be sent.

· “perMessage”. The absence or presence of the AckRequest element can be varied per message.

This property is included in the message.

	SyncReplyMode
	This property, when present, indicates that the Sender expects a synchronous response. The SyncReplyMode may only be set to a value other than “none” if the delivery channel is synchronous.

Format:

· “None”: Indicates that the interaction is asynchronous. It indicates to the Receiver MHS that neither the message nor the MHS signal (such as an acknowledgement) will be returned synchronously.

· “MSHSignalsOnly”: Indicates that the response that is returned synchronously (over the same connection) will contain MHS-level messages; such as an acknowledgement and error messages. All other application level responses messages will be returned asynchronously (based on the delivery channel—binding—set for the response).

· “SignalsOnly”. Not supported in this specification.

· “ResponseOnly”. Not supported in this specification.

· “SignalsAndResponse”: Indicates that any application level responses will be returned over the same connection. The setting of Service and Action correspond to the service and action names for the response.

The SyncReply element in the message is included whenever the SyncReplyMode property is any other value apart from none.

	Actor
	The actor attribute determines which participants in the interaction support ebXML acknowledgement behaviour. The allowed values are “urn:oasis:names:tc:ebxml-msg:actor:nextMSH” and/or “urn:oasis:names:tc:ebxml-msg:actor:ToPartyMSH”. If both are present, then both intermediaries and the Receiver are required to support acknowledgement behaviour.

	EndPoint
	Describes a URL binding to which the message will be sent. Messages represent actions that are collected together into a business service, the combination of both are associated with a binding. A service/action can be bound to multiple channels, representing different transport protocol options. In the Current Live Releases there is only a single ebXML binding type (HTTPS).

	IsAuthenticated
	This property determines whether the Receiver is able to identify the Sender.

Format:

· “none”: authentication is not required.

· “transient”: the implementation of a secure transport protocol, such as SSL or IPSec. This is the ONLY applicable option for Current Live Releases.

· “persistent”: the use of digital signature.

This property is not carried in the message, although its effect might be (for instance, a signature element).

2.5.4 Message Content

The ebXML Message Service Specification defines a set of namespace-qualified SOAP Header and Body element extensions within the SOAP Envelope. These are packaged within MIME multipart attachments to allow payloads or other related attachments to be included with the SOAP extension elements.

The (HL7 or other) messages themselves are included in zero or more additional MIME parts in compliance with SOAP Messages with Attachments [SOAP-Att]. Implementations SHOULD ensure that attachments are compliant with [WSI-ATT]. The general structure of ebXML Mode messages is shown in Figure 2‑6.

There are two logical MIME parts within the Message Package:

· The first MIME part, referred to as the Header Container, containing one SOAP compliant XML message.
· Zero or more additional MIME parts, referred to as Payload Containers, containing application level payloads. This is where NHS messages are transported.

[image: image6]
Figure 2‑6. ebXML Mode SOAP Envelope Structure.

2.5.4.1 Header Container

The Header container carries the SOAP and ebXML elements (including extensions). This MIME part MUST be encoded as 8-bit text. The Content-Type containing the SOAP envelope MUST have the value “text/xml” or “application/xml”.
2.5.4.2 Attachments

This sub-section defines the requirements for an MHS node that supports additional attachments. The following definitions are relevant:

· “Additional-attachments”; includes all non-ebXML MIME parts. Additional attachments include a message payload element (typically HL7) and 0 or more other attachments.

· “Non-payload-additional-attachments”; refers to additional-attachments that are not the message payload.

The non-payload-additional-attachments are only supported by the Spine during Intermediary processing. No Spine sub-systems consume non-payload-additional-attachments.

All MIME header elements are in conformance with [SOAP-Att] specification (note the restrictions on HTTP MIME headers documented in [ebXML-MS] Appendix B.2.2), and SHOULD be compliant with [WSI-ATT]. An example of a MIME part is shown below.
--MIME_boundary

Content-Type: application/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

Content-ID: <061400a.xml@ncrs.nhs.uk>

MHS nodes (and associated accredited systems) MAY support the generation and/or processing of additional-attachments based on business need. This implies that MHS nodes that support accredited systems without such a necessary business need are not required to support non-payload-additional-attachments.

The order of additional-attachments is significant. The primary message payload document (identified by the types “text/XML” or “application/xml”) MUST be the first attachment.

An MHS implementation MUST support 1 mandatory attachment type of “text/XML” or “application/xml”, used for HL7 messages. This attachment SHOULD be UTF-8 encoded. The size of this attachment is driven by the MIM, but MUST be under the maximum message size provided in this section.
All additional-attachments MUST be described in an ebXML Manifest element, and include:

· Manifest/@version
· Manifest/Reference/@href
· HL7/XML attachment(s) MUST include an HL7 ebXML extension element as defined in Part A of this specification.
The following table lists the superset of MIME-types supported for MHS processing.
	MIME Type
	Type Description
	Description

	text/plain
	Plain text
	For any plain text.

	text/html
	HTML Text
	

	application/pdf
	PDF
	PDF documents.

	text/xml
	XML Text
	Representing messages defined in MIM. This is for backwards compatibility of current P1R1 implementations. This type will be deprecated in future releases of the EIS to be replaced by application/xml.

	application/xml
	XML
	Representing messages defined in MIM. Used (see [RFC-3023]) when the XML is Application/xml is preferable when “…the XML MIME entity is unreadable by casual users.”

	text/rtf
	RTF Text
	Rich Text formatted documents.

	audio/basic
	Basic Audio
	For single channel audio, encoded using 8bit ISDN mu-law [PCM] at a sample rate of 8000 Hz. Standardized by: CCITT, Fascicle III.4 Recommendation G.711. Pulse Code Modulation (PCM) of Voice Frequencies. Geneva, 1972.

	audio/mpeg
	MPEG audio layer 3
	Audio compression algorithm and file format defined in ISO 11172-3 and ISO 13818-3.

	image/png
	PNG Image
	Portable Network Graphics (PNG).

	image/gif
	GIF Image
	Graphic Interchange Format.

	image/jpeg
	JPEG Image
	Joint Photographic Experts Group standard.

	image/tiff
	TIFF Image
	

	video/mpeg
	MPEG Video
	Motion Picture Experts Group standard.

	application/msword
	MS Word Document
	Microsoft Word document format. The Word version is to be agreed during requirements definition.

The following table lists the supported encoding formats for each attachment type. MHS nodes are required to support these types commensurate with the defined business messaging requirements. In this specification, MHS nodes that interoperate to support EBS and GP2GP SHOULD support all types. Sending and Receiving nodes are required to construct or process these types, while the Spine is required to route them.

	Content-Type
	7bit
	8bit
	base64
	binary

	Text/plain
	(
	(
	(
	(

	Text/html
	(
	(
	(
	(

	Text/xml
	(
	(
	(
	(

	Text/rtf
	(
	(
	(
	(

	application/xml
	(
	(
	(
	(

	application/pdf
	n/a
	n/a
	(
	(

	audio/basic
	n/a
	n/a
	(
	(

	audio/mpeg
	n/a
	n/a
	(
	(

	image/png
	n/a
	n/a
	(
	(

	image/gif
	n/a
	n/a
	(
	(

	image/jpeg
	n/a
	n/a
	(
	(

	image/tiff
	n/a
	n/a
	(
	(

	video/mpeg
	n/a
	n/a
	(
	(

	application/msword
	n/a
	n/a
	(
	(

	application/octet-stream
	n/a
	n/a
	(
	(

Table 1. Encoding Format Matrix for Attachments.
The Spine MHS places a number of service-related constraints on the types and encodings of attachments, as follows:

· Direct message exchange patterns (as with ebXML ETP services):
· Mandatory content-type—text/xml or application/xml.

· Transfer Content Encodings—8bit only.

· Intermediary Message Exchange (as with EBS, GP2GP, etc)
:

· Mandatory Content Types—text/xml or application/xml.

· Other supported content types for attachments—text/plain, text/html, text/xml, text/rtf, application/xml, application/pdf, audio/basic, audio/mpeg, image/png, image/gif,image/jpeg,image/tiff,video/mpeg
· Transfer Content Encodings for mandatory—8bit only.
· Transfer Content Encodings for other supported—7bit, 8bit, binary, base64, dependent on type.

The Spine, as intermediary, SHOULD reject messages containing additional-attachments that do not adhere to the types, sizes, and related encoding formats defined. The Spine MHS will send a HTTP 500 error if it encounters a message that contains unsupported attachment types and/or message sizes (no SOAP Fault element will be sent). MHS nodes MAY also issue a SOAP fault to provide additional information.

The Spine MHS will support a maximum of 100 attachments in addition to the first ebXML MIME part for Multi-hop Intermediary Reliability messaging only. Multi-hop End Party Reliability allows 5 additional attachments. Otherwise one additional MIME part is supported to hold the standard HL7 payload.
The maximum size
 of a non-payload-additional-attachment is 5MB.

The maximum size (measured as the complete HTTP packet) of a message is 5MB
.
The Spine MHS will adopt one of the following approaches to determining size exceptions;

· The Spine MHS will throw a size exception where the total message size is over 5MB.

· The Spine MHS will throw a size exception where the size of an individual non-payload-additional-attachment is over 5MB.
MHS nodes MAY choose to support a subset of types and sizes. In supporting a subset of the attachment types/size, the MHS has the following discard obligations:

· The MHS MAY choose to discard the entire message. In this case the receiver will inform the sender through defined HL7 response behaviour (this can be found in the MIM).
· The MHS MAY choose to discard the non-supported attachments whilst processing the remainder of the message. In this case the sender is informed through defined HL7 response behaviour, and the receiving application is also informed of the discarded attachments.

· Where there is a potential clinical safety risk associated with selecting a discard obligation, the design of an MHS MUST be sanctioned by the Authority.
2.5.5 ebXML Message Header

The MHS MessageHeader implements the message exchange behaviour and protocol. MHS implementations MUST support the ebXML message service [ebXML-MS] header semantics. There are aspects of ebXML that are optional. The aspects will be elaborated through this specification.

The message header is described in Part A of this specification.
2.5.6 Manifest Element

The Manifest element, contained within the SOAP:Body, references the payload(s) included in the additional MIME parts. The Manifest element is a composite element consisting of one or more Reference elements. Each Reference element identifies payload data associated with the message, whether included as part of the message as payload document(s) contained in a Payload Container, or remote resources accessible via a URL. While this is not precluded by [ebXML-MS], implementations MUST NOT include payload data within the SOAP Body element.

The purpose of the Manifest is:
· To make it easier to directly extract a particular payload associated with the ebXML Message.
· To allow the MHS node to determine whether it can process the payload without having to parse it.

· To allow the MHS node to handle (including parsing) the MHS-specific elements without having to also parse the payload.

2.5.7 MHS Addressing

2.5.7.1 Logical Architecture

Addressing provides the mechanism to describe the destination of a message. The behaviour of addressing within an MHS is part of the logical Routing component (see Figure 2‑3). Each layer logical layer in the health system infrastructure has a specific method of addressing a destination system, as well as a method providing an abstract address to its immediate subordinate layer for mapping to an increasingly concrete address; i.e. the address at Layer N is derived from the address provided by Layer N+1. As the message descends through the layers of the stack the address becomes increasingly physical, to the point where the address represents a specific destination network device. Figure 2‑7 shows 2 logical and interoperating systems consisting of various messaging layers. It provides examples of addressing attributes that exist between inter-system peer layers as well as the attributes communicated between layer N and N-1 in the same system.

[image: image7.emf]HL7 Payload HL7 Payload

HL7 Transmission HL7 Transmission

MHS

MHS

Transport Transport

Organisation Id, Role Profile Id, etc

Accedited System Id

PartyId, service, action

HTTP Address, SOAP Action

Organisation Id, Role Profile Id, etc

Accedited System Id

HTTP Address, SOAP Action

Figure 2‑7. Addressing information to Layers.
The following definitions are relevant to addressing:

· Accredited System: A logical notion that relates to a physically installed health system that communicates with other NHS CFH health systems
. An accredited system is primarily an Information Governance concept. The implication is that the system has been formally “accredited” to interact in the NHS CFH environment. The SDS holds systems that have been accredited, along with the service/actions that the system is accredited to send and receive. The accredited system is also defined by a set of access control attributes which, with Authority agreement, signify that a system is accredited to perform local RBAC checks, LR checks, clinician sealed envelopes and patient sealed envelopes.

· Service and Action: A software component (or components) are made up of a number of business actions (or methods) that implement specific health functions via remotely exposed interfaces. EBS is an example of a business service, while the EBS “Request Service - PRPA_IN010000UK07” can be considered an action.

· Binding End Point: The transport terminating point for a receiver. For example, https://national.carerecords.nhs.uk/ebxmlMHS is a binding end point for an HTTPS transport to Spine-provided business services.

· Service End Point: The end point of the instance of a health system that actually implements the service/action. This is typically defined in an implementation specific manner (for example a JNDI binding for an EJB Home Interface), and it not exposed to external systems. The service end point is represented externally in more abstract terms through addresses defined above transport layers. This specification does not provide a mechanism for exposing concrete service end point addresses to external systems.

Each layer implements different addressing strategies, and uses different addressing mechanisms in its protocols and behaviours. The following addressing mechanisms are required at each layer:

· HL7 Processor Layer. The HL7 Processor uses two mechanisms for addressing destinations:

· Accredited system Ids (ASID) to address remote HL7 processing components. An ASID is carried in the HL7 headers. It is used by the sending system to assert its accredited status. Additionally, by the inclusion of a destination ASID, the sender asserts that it is sending a message to an accredited receiver. The ASID is a reference to information that describes the internal service end point to external systems (via the SDS). The system identified by the ASID implements “accredited” business service and actions. It is also associated with a primary (or most significant) organisation code and a number of client codes (other organisation codes supported by this accredited system) so that, given an SDS organisation code, a sending system may discover the ASID of the receiving system. The behavioural aspects of this layer are described by the HL7 message. Note, also, that HL7 payload contains increasingly abstract addressing notions, such as role profiles or organisation identifiers.

· Organisational codes to address beyond the accredited system. While ASIDs get a message to the specific system that “owns” the message, LSP/NASP deployments can mean that this is not very close to the actual organisation or individual that is the intended destination of the message. A sending system that has this additional organisational context SHOULD include it in the HL7 wrapper (both in request and response). The requirement to include this information in any particular functional domain is driven by specific guidance provided in the MIM (or applicable Authority-provided guidance information). The generation rules are as follows:

	HL7 Wrapper Element
	Generation Notes

	/Message/communicationFunctionRcv/device/agencyFor/representedOrganization/id
	On a request contains the SDS organisation code of the organisation which the message is addressed—this is not necessarily the organisation associated with the ASID.

On the response contains the SDS organisation code most applicable to the receiver.

By default this is NOT REQUIRED if the receiver/sender is a NASP.

	/Message/communicationFunctionSnd/device/agencyFor/representedOrganization/id
	On a request contains the most appropriate SDS organisation code of the organisation the message is from—this SHOULD be the intended recipient of any response.

On the response contains the SDS organisation code most applicable to the Sender.

By default this is NOT RECOMMENDED if the receiver/sender is a NASP.

	/Message/communicationFunctionRcv/device/agencyFor/representedOrganization/AgentPersonSDS/id
	On the request contains the SDS Role Profile Id of the person to which the message is addressed.

On the response contains the SDS Role Profile Id of the most appropriate receiver.

By default this is NOT RECOMMENDED if the receiver/sender is a NASP.

	/Message/communicationFunctionSnd/device/agencyFor/representedOrganization/AgentPersonSDS/id
	On the request contains the SDS Role Profile Id of the sending person—this SHOULD be the intended recipient of any response.

On the response contains the SDS Role Profile Id of the most appropriate responder.

By default this is NOT RECOMMENDED if the receiver/sender is a NASP.

	/Message/communicationFunctionRcv/device/agencyFor/representedOrganization/AgentPersonSDS/agentPersonSDS/id
	On the request contains the SDS User Id of the person to which the message is addressed.

On the response contains the SDS User Id of the most appropriate responder.

By default this is NOT RECOMMENDED if the receiver/sender is a NASP.

	/Message/communicationFunctionSnd/device/agencyFor/representedOrganization/AgentPersonSDS/agentPersonSDS/id
	On the request contains the SDS User Id of the sending person—this SHOULD be the intended recipient of any response.

On the response contains the SDS User Id of the most appropriate responder.

By default this is NOT RECOMMENDED if the receiver/sender is a NASP.

· MHS Layer. The MHS layer is primarily addressed using a Party Id. The PartyId is carried in ebXML protocol headers. It can describe a specific instance of an MHS product, or a collection of MHS nodes. The PartyId is a logical point of addressing, used by a receiving MHS node to determine it’s ownership of a received message, and a sending MHS to indicate its intended destination. The MHS layer acts as a proxy (a binding end point) for service and action couplets, which are additional addressing elements provided in the ebXML headers. It does not implement the service/action, but knows the (internal) route to the service endpoint. This specification does not mandate the process of internal routing. The behavioural aspects of this layer are described by the ebXML and web service message elements.

· Transport layer. There is a single transport layer used by this specification; namely HTTP(s). The primary address structure is the URL.

2.5.7.2 Registration

Addressing information is provided at deployment time via a registration process. System registrars are required to register the necessary external details associated with their implementations. Registration information is held centrally in the SDS. Once registered, systems may use this information for dynamic addressing and routing, or may opt for a more static caching mechanism. While the addressing information is unlikely to be highly changeable (therefore rewarding caching), implementations SHOULD refresh cached information when remote system requests fail (using a similar approach to the J2EE Service Locator pattern).

For addressing purposes, the following SDS classes/attributes MUST be registered:

· MHS objects; identified by a PartyId.

· Accredited System objects; identified by an ASID, associated owning organisation code, a collection of organisational codes that are supported by the system, and actions “accredited” for the system. It is the responsibility of the system registrar to ensure that their accredited systems are assigned appropriate organisation codes (both the nhsIdCode and the nhsAsClient collection). The most appropriate organisation code (nhsIdCode) will be that which logically represents the organisational access point as seen by the sender. It is also the responsibility of the registrar to register the sending and receiving service/actions that have been accredited for that system.

· Services attributes; containing the business service and action ids. These are associated to both MHS objects (thus providing external addressing) and accredited system objects. The MHS object contains service/actions where the MHS acts as receiver. The Accredited System object contains both accredited sending and receiving service/actions. These are used for accredited system checking, and MAY be used for accredited system addressing and version management.

· Contract Property attributes; containing the contract settings for each service/action implemented. See 2.5.3 Interface Contract Properties for more information.

· Binding objects; containing a URL for the service/action.

An MHS node is also an instance of a product that supports (to a greater or lesser degree) health services. It therefore also is an accredited system. As such all MHS nodes MUST also be registered as accredited systems, and will have an ASID.

2.5.7.3 Address Resolution and Binding

The following steps SHOULD be followed to resolve addresses at each layer:

· It is given that the sending system knows the service and action (HL7 interaction id) that it is requesting from the remote application role, as well as the organisation code of the recipient.
· The Sender determines the ASID of the receiving system; either from cache or discovery via a known organisation code. It is likely that senders will have NASP (such as ETP, EBS, etc) ASIDs cached, while inter-LSP messaging (such as GP2GP) will require discovery.

· Organisations may also implement multiple accredited systems. The Sender must therefore determine the system within the organisation that implements the appropriate service/action combination. If multiple systems implement that same service and action, the Sender can infer that each is an applicable candidate for the request.

· If the AS has been configured with the list of organisation codes that it supports (nhsAsClient), this collection is likely to provide direct access to the AS from the recipient organisation code. If not, the next step is required.
· The SDS supports a hierarchy of organisations. Should the sender not discover a receiving AS object with what they determine is an appropriate organisation code it may obtain the parent organisation code and attempt another lookup. A child organisation can not be obtained from the SDS.

· Given the Receiver’s ASID, the Sender may then determine the MHS node which acts as a proxy for the system, and hence establish the PartyId. An ASID MUST only exist behind a single MHS node.

· Given the Receiver’s PartyId the Sender can then determine both the contract properties for the interface and the appropriate binding information to connect to the binding end point. The binding end point and contract properties are unique to a PartyId, Service, and Action. At this point the Sender now has the information required to form a complete message request (HTTP, MIME, SOAP, ebXML, and HL7).

· Note that there is no notion of a static binding for ebXML addresses (as would be provided in a WSDL, for instance), other than caching the results of a dynamic binding. Caching can, of course, be provided through static configuration.
As described previously, the above addressing scenario is not typically performed by one (logical) layer. The implication of this is that each layer may be physically separate within the IT infrastructure. For instance, the health application might perform the HL7-specific addressing. This is then passed to a central MHS node which then performs the MHS-related addressing. This specification does not provide internal inter-layer service interfaces for such purposes.

The addressing of web service requests is described in 2.6 MHS Web Service Mode.

In addition to the bindings for service/action, each MHS node is REQUIRED to provide a binding for three standard ebXML end points associated with error handling, acknowledgements, and management. These are required in the situation where ebXML messages containing ErrorList, Acknowledgment, and Ping elements are sent without business payload and as such not associated with a business Service/Action. ErrorList and Acknowledgment bindings are only required where the exchange pattern mandates asynchronous transmission of these actions. Each MHS node (PartyId) MUST have an entry in the directory for the following specific Service/Action combination:

· For ebXML messages containing an Acknowledgment element; “urn:oasis:names:tc:ebxml-msg:service” and “Acknowledgment”

· For ebXML messages containing an error list element; “urn:oasis:names:tc:ebxml-msg:service” and “MessageError”.
And SHOULD have an entry for
:

· For ebXML messages containing a ping element; “urn:oasis:names:tc:ebxml-msg:service” and “Ping”.
2.5.7.4 Intermediary Addressing

The MHS supports multi-hop processing; the inclusion of a 1 or more MHS nodes between the Sender and Receiver.
The Spine MHS is considered the primary Intermediary for all national services and inter-LSP services. The Spine supports three intermediary patterns; Multi-Hop End Party Reliability, Multi-Hop Intermediary Reliability and Multi-Hop No-Party Reliability. The Spine maintains a specific intermediary binding end point for each of these patterns. This is obtained from the SDS based on the following service and action and the Spine PartyId:

· Service=“ urn:nhs:names:services:tms”

· Action=
· “ExpressIntermediary” (multi-hop end party reliability)

· “ReliableIntermediary” (multi-hop intermediary reliability)
· “UnreliableIntermediary” (Multi-Hop No-Party Reliability) (described [BT-Mbeh]).

When forwarding messages through the Spine intermediary, the Sender has the following responsibilities:

· The Sender’s MHS message MUST contain the Receiver’s MHS address (PartyId), not that of the Intermediary.
· The Sender MUST ensure that all HL7 addressing information relates to the Receiver, not the Intermediary.

· The Sender resolves the Intermediary’s physical transport binding (given the service/action pairs defined above) and sends the message to this binding. The Receiver SHOULD use the SDS to resolve this binding.

· The MHS nodes use the contract properties associated with the receiver’s PartyId, Service, and Action. The message is sent via the behaviour defined by the contract properties and Part 3 of this specification.

2.5.7.5 Addressing Elements

The addressing elements in the SOAP header, body, and attachments (in the case of an HL7 message) are derived as follows:

· eb:partyId. These elements (both To and From) carry the Party Key from SDS. The Party Key is a unique number assigned during registration. This is only used in ebXML Mode.

· hl7:/message/communicationFunctionRcv/device/id and /Message/communicationFunctionSnd/device/id. This contains the ASID.

· hl7:message/interactionId. This contains the action name (but not the service name).

· eb:service. This is the service name provided by the system. It is based upon the NHS service name namespace; “urn:nhs:names:services:<BusinessServiceName>”. Current registered values for <BusinessServiceName> can be found in Part A of this specification.
· eb:action. The same as InteractionId/@extension for HL7 messages.
· Request-URI and Host is derived from the binding information from the SDS.

· The HTTP SOAP Action is a concatenation of the Service and Action element.

2.5.7.6 Supported Deployment Topologies

The addressing mechanism supports numerous deployment topologies.

	The simplest deployment method is a single system that has an in-built MHS sub-system. This type of configuration may occur in a specific GP office, for instance. The MHS node communicates directly with other MHS nodes, including NASP MHS nodes. The system has both an ASID and a PartyId, and will implement services and actions applicable to its function. There is a 1..1 relationship between the services supported by the ASID and those supported by the MHS node, and it is associated with a single organisation code.
	[image: image8.emf]ASID 6

MHS Node

	At the other end of the addressing continua is where a common MHS node is used as a hub for many (most likely) distributed accredited systems. The accredited systems do not contain any MHS functionality. This could be a typical LSP configuration, and the Spine is also structured in such a manner. The MHS node acts as a proxy to all service/actions supported by the systems behind it. Internal addressing between the systems and the MHS is not the subject of this specification
.

The systems are likely to exist in multiple organisations. Additionally, the MHS node would be associated with a different organisation again.
	[image: image9.emf]ASID 1 ASID 2

MHS Node

ASID 3

ASID 4

	Implementations may also be hybrids of these models. For instance, an LSP may implement a number of distributed MHS nodes, each of which acts as a proxy for a subset of systems. At the same time the LSP may also have a number of single MHS-system couplets which are not connected to central MHS nodes.

A hierarchical model is also possible. In this scenario systems communicate with local (or regional) MHS nodes, and these nodes communicate will a central node, which in term communicates with inter-LSP MHS nodes. In this case the central MHS node is basically acting as an MHS intermediary.
	[image: image10.emf]ASID 8

MHS Node

ASID 7

MHS Node

MHS Node

ASID 9

2.5.8 ebXML Mode: Pseudo HL7 Messages

Pseudo HL7 messages have been introduced to allow current mechanisms (built around HL7 messages) to carry non-HL7 messages without requiring significant change. For elaborated examples of pseudo-HL7 services see Part 11 – Access Control Service or Part 10 – VPD. Pseudo HL7 messages take advantage of the HL7 Wrapper and Control Act structures to transport custom non-HL7 payloads. In ebXML Mode these messages use the ebXML protocol and the behaviour as described in this section (section 2.5). In addition the SOAP payload will contain an HL7 Wrapper and an HL7 Control act containing in the custom message. The overall structure of a Pseudo HL7, ebXML mode message is shown below.

[image: image11]
Figure 2‑8. Pseudo–HL7 ebXML Mode SOAP Envelope Structure.

2.5.8.1 Pseudo-HL7 SOAP Message sample

The following shows an example of an ebXML request.

--MIME_BoundaryId:<example@hl7.com>Type:text/xml

<?xml version="1.0" encoding="utf-8"?>

<SOAP:Envelope xmlns:hl7ebxml="urn:hl7-org:transport/ebXML/DSTUv1.0" xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xlink="http://www.w3.org/1999/xlink">

<SOAP:Header xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<eb:MessageHeader eb:version="2.0" SOAP:mustUnderstand="1">

<eb:From>

<eb:PartyId eb:type="urn:nhs:names:partyType:ocs+serviceInstance">LSP1-00004</eb:PartyId>

</eb:From>

<eb:To>

<eb:PartyId eb:type="urn:nhs:names:partyType:ocs+serviceInstance">SPINE-00001</eb:PartyId>

</eb:To>

<eb:CPAId>S454A3345</eb:CPAId>

<eb:ConversationId>11111111-1111-1111-1111-111111111111</eb:ConversationId>

<eb:Service>urn:nhs:names:services:psisquery</eb:Service>

<eb:Action>ITEMLISTQUERYUK01</eb:Action>

<eb:MessageData>

<eb:MessageId>11111111-1111-1111-1111-111111111111</eb:MessageId>

<eb:Timestamp>2005-02-04T16:39:08.9Z</eb:Timestamp>

</eb:MessageData>

</eb:MessageHeader>

</SOAP:Header>

<SOAP:Body xmlns:eb="http://www.oasis-open.org/committees/ebxml-msg/schema/msg-header-2_0.xsd">

<eb:Manifest eb:version="2.0">

<eb:Reference xlink:href="cid:payload1@hl7.com">

<eb:Description xml:lang="en-us">my description </eb:Description>

</eb:Reference>

 <hl7ebxml:Payload style="HL7" encoding="XML" version="3.0"/>

</eb:Manifest>

</SOAP:Body>

</SOAP:Envelope>

-MIME_BoundaryId:<payload1@hl7.com>Type:application/xmlTransfer-Encoding:8bit

<?xml version="1.0" encoding="UTF-8"?>

<ITEMLISTQUERYUK01 type="Message" xmlns="urn:hl7-org:v3"xmlns:crs="http://national.carerecords.nhs.uk/schema/crs/">

<id root="11111111-1111-1111-1111-111111111111"/>

<creationTime value="200401061130"/>

<versionCode code="V3NPfIT6.2.01"/>

<interactionId root="2.16.840.1.113883.2.1.3.2.4.12" extension=" ITEMLISTQUERYUK01"/>

<processingCode code="P"/>

<processingModeCode code="T"/>

<acceptAckCode code="NE"/>

<communicationFunctionRcv type="CommunicationFunction" typeCode="RCV">

<device classCode="DEV" determinerCode="INSTANCE" type="Device">

<id root="1.2.826.0.1285.0.2.0.107" extension="PDS ASId"/>

</device>

</communicationFunctionRcv>

<communicationFunctionSnd type="CommunicationFunction" typeCode="SND">

<device type="Device" classCode="DEV" determinerCode="INSTANCE">

<id root="1.2.826.0.1285.0.2.0.107" extension="ASIDAsyncQueryRequest001"/>

</device>

</communicationFunctionSnd>

<ControlActEvent classCode="CACT" moodCode="EVN">

<author typeCode="AUT">

<AgentPersonSDS classCode="AGNT">

<id root="1.2.826.0.1285.0.2.0.67" extension="7643324387"/>

<agentPersonSDS classCode="PSN" determinerCode="INSTANCE">

<id root="1.2.826.0.1285.0.2.0.65" extension="5452322"/>

</agentPersonSDS>

<part typeCode="PART">

<partSDSRole classCode="ROL">

<id root="1.2.826.0.1285.0.2.1.104" extension="ABCD"/>

</partSDSRole>

</part>

</AgentPersonSDS>

</author>

<author1 typeCode="AUT">

<AgentSystemSDS classCode="AGNT">

<agentSystemSDS classCode="DEV" determinerCode="INSTANCE">

<id root="1.2.826.0.1285.0.2.0.107" extension="accredited system id"/>

</agentSystemSDS>

</AgentSystemSDS>

</author1>

<author1 typeCode="AUT">

<AgentSystemSDS classCode="AGNT">

<agentSystemSDS classCode="DEV" determinerCode="INSTANCE">

<id root="9.99.999.9.999999.9.9.9.9.9.99" extension="work station id"/>

</agentSystemSDS>

</AgentSystemSDS>

</author1>

 <crs:ListLineItemsRequest>

<< List Line Item Request message here >>

 </crs:ListLineItemsRequest>

</ControlActEvent>

</ITEMLISTQUERYUK01>

-MIME_Boundary--

2.6 MHS Web Service Mode
2.6.1 Overview

This section describes the protocol and MHS behaviour for the Web Service Mode. This section provides the generic aspects of web service behaviour. Application specific behaviour can be found in other sections of this specification. This service mode is available for all message types; that is, services that consume both HL7, non-HL7 and pseudo-HL7 messages.

The Web Services Mode of MHS is delivered by considering the Receiver MHS node as a standard Web Service provider. This means that the Sender MHS node will build a SOAP request conforming to this specification rather than an ebXML request. Message interactions that use ebXML are not callable as a synchronous Web Service, and vice versa.

The service provider MUST produce a WSDL definition which is compliant with the WS-I Basic Profile for each web service. The WSDL released with this specification represents a formal definition of the interface as defined by this specification but is subordinate to this specification. The WSDL is not warranted to generate web service stubs. This is due to the diversity of tools implemented across the national program, and the inability to guarantee that the WSDL will operate correctly in all environments. Implementers MAY use the WSDL to build product-specific WSDL, or implement the service interfaces in some other manner. Regardless, the client and service MUST support the protocols and formats described in this section.

To be able to fulfil the requirements of this mode the following properties of the interaction must exist:

· The business collaboration is restricted to one-way or two-way request-response.

· The interface MUST be synchronous from the perspective of an HTTPS connection. The request and response are communicated over the same HTTPS connection.

· The service caller and provider MUST NOT communicate via an intermediary.

· Service providers MUST enter binding information into the SDS, associated with the appropriate MHS PartyId and service/action from the soapAction within the WSDL. Binding information MAY be provided within WSDL definitions. The service provider will determine the precedence of these mechanisms if both exist.

· The service caller MUST handle all error conditions. The Receiver MHS node will not provide any reliability processing outside standard web service (and HTTP) fault handling.

· The Receiver MHS will not support any web service security related features.
· The web service client MUST be able to locate and connect to the server using HTTPS.

2.6.2 Version Management

P1R1 and Release Current Live Releases versions of Web Service mode are considered discrete. Where an MHS implementation is required to send a P1R1 interaction, it MUST use the behaviour described in [EIS5.5]. Where an MHS is required to send a Release 2008-B interaction, it MUST use this version of the specification. Versions of interactions MUST not be mixed. Should an MHS detect a version incompatibility it MUST throw a SOAP fault. The appropriate codes are defined in Part B of this specification.

Different versions of the same service MAY be configured to utilise the same endpoint URL. In this case different WSDL may be supplied referencing the same endpoint.

2.6.3 Web Services Mode Header

The P1R1 approach for both HL7 and non-HL7 headers used NHS CFH-specific elements to present headers. The web service headers are derived from the WS-Addressing [WS-A] specification
. Future releases will be enriched with other WS-* specifications as they become stable and where there is an appropriate functional requirement.

Web Service mode interactions use a request-reply pattern. All SOAP message headers (unless specifically stated) will include a subset of WS-Addressing elements. These will be included directly in the SOAP Header as described in the [WS-A]. The following [WS-A] elements are included in the header (note that ‘wsa’ has been used as a default namespace prefix).

	Common Elements - Request Header

	/wsa:MessageID
	REQUIRED
	This element is the unique message id for the message. The web service message Id is in a modified DCE UUID form as defined by Part A of this specification. While it is syntactically equivalent to the payload message id it is semantically different. The two ids are considered to operate at different layers. There is no requirement that they be the same or different, merely that they be treated separately. This has a “uuid:” prefix.

	/wsa:To
	REQUIRED
	This element (of type xs:anyURI) is the destination of the message.

	/wsa:Action
	REQUIRED
	This element conveys the action of the message.

	/wsa:ReferenceParameters
	OPTIONAL
	A component of the abstract Endpoint Reference. Used to carry application specific parameters defined by the issuer of the end-point reference. This is implemented as per [WS-A] which states that with a WS-A SOAP binding;

Each [reference parameter] element becomes a header block in the SOAP message. The element information item of each [reference parameter] (including all of its [children], [attributes] and [in-scope namespaces]) is to be added as a header block in the new message.

	/wsa:From
	REQUIRED
	This REQUIRED element (of type wsa:EndpointReferenceType) is the source host of the message; this being the source MHS. Only the Address element is mandatory.

	/wsa:ReplyTo
	REQUIRED
	This element (of type wsa:EndpointReferenceType) provides the URI of the endpoint to reply to. The value of this element MUST be identical to that of the wsa:From element
. Note that web service mode is not used for asynchronous messaging, therefore the reply will always be returned to the “open” client component regardless of the ReplyTo element. Only the Address element is mandatory.

	Common Elements - Response Header

	/wsa:MessageID
	REQUIRED
	This element is the unique message id for the message. The web service message Id is in a modified DCE UUID form as defined by Part A of this specification. While it is syntactically equivalent to the payload message id it is semantically different. The two ids are considered to operate at different layers. There is no requirement that they be the same or different, merely that they be treated separately. This has a “uuid:” prefix.

	/wsa:To
	REQUIRED
	This element (of type xs:anyURI) is the destination of the message.

This element will be derived from the wsa:From element, the wsa: To and wsa:From being swapped for the response message.

	/wsa:Action
	REQUIRED
	This element conveys the action of the message.

	/wsa:ReferenceParameters
	REQUIRED
	Used to carry application specific parameters defined by the issuer of the end-point reference. This is implemented as per [WS-A] which states that with a WS-A SOAP binding;

Each [reference parameter] element becomes a header block in the SOAP message. The element information item of each [reference parameter] (including all of its [children], [attributes] and [in-scope namespaces]) is to be added as a header block in the new message.

	/wsa:From
	REQUIRED
	This REQUIRED element (of type wsa:EndpointReferenceType) id the source host of the message this being the source MHS. Only the Address element is mandatory.

	/wsa:RelatesTo
	REQUIRED
	This element MUST convey the messageId of the request. This has a “uuid:” prefix.

2.6.4 Web Service Mode: HL7 messages

The general structure of a HL7 message sent in Web Service Mode (based on a SOAP binding) is shown in Figure 2‑9. The SOAP header contains [WS-A] elements, while the SOAP body contains the HL7 interaction message. The binding of HL7 elements to the [WS-A] structures has been derived from [HL7-WSA]. For responses, the HL7 wrapper is wrapped in a nasp element in order to aid WSDL WS-I Basic Profile compliance. Please refer to [NASP-XML] for all messages that include the wrapping nasp element.

[image: image12]
Figure 2‑9. Web Service Mode (HL7) SOAP Envelope.

2.6.4.1 HL7 Web Service Header Elements

	Common Elements

	/wsa:MessageID
	Identifier in the modified form of a DCE UUID, as defined in Part A of this specification. This has a “uuid:” prefix.

	/wsa:To
	URL that represents the end-point for the service. This is the same URL used on the HTTP Post. This can be obtained from the SDS, or alternatively from WSDL provided by the service provider. The service provider will determine the precedence of these two methods.

	/wsa:Action

	This is a concatenation of service name and InteractionId in the form of URI. Both the request and response MUST use the interactions as defined in the MIM.

For example: urn:nhs:names:services:pdsquery/qupa_in010000uk13

urn:nhs:names:services:pdsquery/qupa_in030000uk15

	/wsa:ReferenceParameters
	The wsa end-point reference parameters MUST be made up of the following HL7 elements from the HL7 message in the SOAP body in both the request and response:

· Sending Device Id (CommunicationFunctionSnd type)

· Receiving Device Id (CommunicationFunctionRcv type)
For the SOAP binding, each reference parameter becomes an element within the SOAP:Header block. The namespace (HL7, in this case) for the elements is included in the SOAP Envelope element.

	/wsa:From
	Defined by the caller.

	Request Header

	/wsa:ReplyTo
	Defined by the caller.

	Response Header

	/wsa:RelatesTo
	Identifier in the modified form of a DCE UUID, as defined in Part A of this specification. This has a “uuid:” prefix.

2.6.4.2 HL7 SOAP Body

The body of the SOAP message contains the complete HL7 interaction (from the xxxx_INnnnnnnUKvv schema). The request message includes the interaction root directly within the SOAP Body. For example:

<SOAP-ENV:Body>

<hl7:QUPA_IN010000UK13>

</hl7:QUPA_IN010000UK13>

<SOAP-ENV:Body>
HL7 responses MUST be included within a custom NASP element to enable WS-I compliance (see [NASP-XML] for details). For example:

<SOAP-ENV:Body>

<hl7:traceQueryResponse>

<hl7:QUPA_IN030000UK15>

</hl7:QUPA_IN030000UK15>

</hl7:traceQueryResponse>

<SOAP-ENV:Body>
2.6.4.3 Faults

With one exception HL7 message interactions do not use standard SOAP and [WS-A] fault handling. An HL7 exception is always returned to the sender as a SOAP “success”. In that scenario the MIM defines the necessary application messages to be sent in case of a fault. Such application messages also include exceptions associated with processing the (SOAP body component of) message.

The exception to this behaviour is when a receiving SOAP handler throws a SOAP exception not specific to the processing of the HL7 message. In this case a SOAP fault is generated as per 2.6.5.3 Faults and 2.7.1 General SOAP Errors. Where exceptions relate to the contents of WS-Addressing elements the exception generator is required to format SOAP Faults as per section 4 of [WS-A].
2.6.4.4 HL7 SOAP Message sample

The following shows an example of a web service request.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns="urn:hl7-org:v3">

<SOAP-ENV:Header>

<wsa:MessageID>uuid:6B29FC40-CA47-1067-B31D-00DD010662DA</wsa:MessageID>

<wsa:Action>urn:nhs:names:services:pdsquery/QUPA_IN010000UK13</wsa:Action>

<wsa:To>https://synch.nis1.national.ncrs.nhs.uk/syncservice/tms</wsa:To>

<wsa:From>

<wsa:Address>http://myMSH.com/pds/myPage.asmx</wsa:Address>
</wsa:From>

<hl7:communicationFunctionRcv>

<hl7:device>

<hl7:id root="1.2.826.0.1285.0.2.0.107" extension="ZZZ999-100000000900001"/>

</hl7:device>

</hl7:communicationFunctionRcv>

<hl7:communicationFunctionSnd>

<hl7:device>

<hl7:id root="1.2.826.0.1285.0.2.0.107" extension="ZZZ000-100000000800001"/>

</hl7:device>

</hl7:communicationFunctionSnd>

<wsa:ReplyTo>

<wsa:Address>http://myMSH.com/pds/myPage.asmx</wsa:Address>

</wsa:ReplyTo>

</SOAP-ENV:Header>

<SOAP-ENV:Body>
<!—HL7 message here -->
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Response example
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns="urn:hl7-org:v3">

<SOAP-ENV:Header>

<wsa:MessageID>uuid:6669FFFF-CA47-1067-B31D-00DD010662DA</wsa:MessageID>

<wsa:Action>urn:nhs:names:services:pdsquery/QUPA_IN030000UK15</wsa:Action>

<wsa:To>http://myMSH.com/pds/myPage.asmx</wsa:To>

<wsa:From>

<wsa:Address>https://synch.nis1.national.ncrs.nhs.uk/syncservice/tms</wsa:Address>
</wsa:From>

<hl7:communicationFunctionRcv>

<hl7:device>

<hl7:id root="1.2.826.0.1285.0.2.0.107" extension="ZZZ999-100000000900001"/>

</hl7:device>

</hl7:communicationFunctionRcv>

<hl7:communicationFunctionSnd>

<hl7:device>

<hl7:id root="1.2.826.0.1285.0.2.0.107" extension="ZZZ000-100000000800001"/>

</hl7:device>

</hl7:communicationFunctionSnd>

<wsa:RelatesTo>

uuid:6B29FC40-CA47-1067-B31D-00DD010662DA

</wsa:RelatesTo>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<!—NASP response wrapper opens -->

<!—HL7 message here -->

<!—NASP response wrapper closes -->

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

2.6.5 Web Service Mode: Non-HL7 Services.

The general structure of a non-HL7 message sent in Web Service Mode (based on a SOAP binding) is shown in Figure 2‑10. The SOAP header contains [WS-A] element, while the SOAP body contains the non-HL7 message. Note that at the date of release of this specification no new Non-HL7 Web Services are required. The following therefore represents expected behaviour for future services.

[image: image13]
Figure 2‑10. Web Service Mode (non-HL7) SOAP Envelope.

2.6.5.1 Non- HL7 Web Service Header Elements

	Common Elements

	/wsa:MessageID
	Identifier in the modified form of a DCE UUID, as defined in Part A of this specification.

	/wsa:To
	URL that represents the end-point for the service. This can be obtained from the SDS, or alternatively from WSDL provided by the service provider. The service provider will determine the precedence of these two methods.

	/wsa:Action
	This is a concatenation of service name and actionId in the form of URI. This is defined in the applicable application-specific sections within this specification.

	/wsa:ReferenceParameters
	No general Reference Parameters. Though these may be introduced by individual Web Service Descriptions.

	/wsa:From
	Defined by the caller.

	Request Header

	/wsa:ReplyTo
	Defined by the caller.

	Response Header

	/wsa:RelatesTo
	Identifier in the modified form of a DCE UUID, as defined in Part A of this specification.

The Non-HL7 Web Service Header: messageHeader
In addition to the WS-Addressing elements described above the NASP Header element MAY be used by Non-HL7 Web Services to provide general transport information.
 It MAY be located in the SOAP Header of a WS-A Web Service. In addition it MAY be used as part of service specific extensions to ebXML. See service specific documentation for guidance on how it is populated for a particular service.
	Common Elements

	Element name
	Type
	Cardinaliy
	Comments

	/nasp:creationTime

	xs:dateTime
	0..1
	The date and time that the message was created. (CCYY-MM-DDThh:mm:ss)

	/nasp:fromASID
	xs:string
	0..1
	ID of an accredited system that has sent the message

	/nasp:toASID
	xs:string
	0..1
	ID of an Accredited System to which this message is directed.

	/nasp:messageId
	xs:string
	0..1
	A unique message identifier generated by the sender. This maybe a standard DCE UUID or the modified form of the DCE UUID defined in part A.6. MAY refer to payload Message ID.

	/nasp:securityPackage
	Complex
	0..1
	Deprecated but retained for future use.

	/nasp:errorList
	Complex
	0..1
	Held in the NASP header for use in non web service applications. This structure is normally return in SOAP faults for non-HL7 Web Services.

	/nasp:interactionID
	xs:string
	0..1
	Interaction ID of the payload message

	/nasp:messageSize
	xs:string
	0..1
	The size (in kilobytes) of the message.

2.6.5.2 SOAP Body

The SOAP Body for non-HL7 messages will contain a service specific message as defined by its WSDL and associated XSD Schema.

2.6.5.3 Faults

SOAP specific processing errors are returned in a SOAP fault element as per 2.7.1 General SOAP Errors. Errors associated with processing the application-specific payload (in the SOAP body) are returned within the Fault/detail element. The structure of the custom detail element is defined by the ErrorList described in Part A of this specification.
Where an ErrorList is provided in Fault/detail, the Sender MUST set the following in the Fault element (see Part A of this specification for MHS specific errors):

· Fault/faultcode as <SOAP namespace:>“Client” or “Server” depending on the class of error; e.g. “SOAP-ENV:Server”

· Fault/faultstring as “Application Exception”.

· The ErrorList MUST contain details of the exception.

Implementations MUST include [WS-A] headers when returning a SOAP fault. The exception to this is the occurrence of wsa faults themselves for which the action defined in [WS-A] MUST be used.

The following is an example of a SOAP Fault fragment.

<SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>Server Error</faultstring>
 <detail>

<nasp:errorList xmlns:nasp="http://national.carerecords.nhs.uk/schema/" >

<nasp:error>
 <nasp:codeContext>urn:nhs:names:errors:xx</nasp:codeContext>

 <nasp:errorCode>TRM00001</nasp:errorCode>

 <nasp:severity>error</nasp:severity>

 <nasp:location>//someElement/someElement</nasp:location>

 <nasp:description>some textual description</nasp:description>

 </nasp:error>

</nasp:errorList>
 </detail>
</SOAP-ENV:Fault>
2.6.6 Web Service Mode: Pseudo HL7 Web Services.

Pseudo HL7 messages have been introduced to allow current mechanisms (built around HL7 messages) to carry non-HL7 messages without requiring significant change. For elaborated examples of pseudo-HL7 services see Part 11 – Access Control Service or Part 10 – VPD. Pseudo HL7 messages take advantage of the HL7 Wrapper and Control Act structures to transport custom non-HL7 payloads. In Web Service mode these messages use WS-A headers with the HL7 Endpoint Reference Parameters. In addition the SOAP payload will contain and HL7 Wrapper and an HL7 Control act containing in the custom message.

[image: image14]
Figure 2‑11. Web Service Mode (pseudo-HL7) SOAP Envelope.

2.6.6.1 Pseudo-HL7 Web Service Header Elements
	Common Elements

	/wsa:MessageID
	Identifier in the modified form of a DCE UUID, as defined in Part A of this specification. This has a “uuid:” prefix.

	/wsa:To
	URL that represents the end-point for the service. This is the same URL used on the HTTP Post. This can be obtained from the SDS, or alternatively from WSDL provided by the service provider. The service provider will determine the precedence of these two methods.

	/wsa:Action

	This is a concatenation of service name and actionId in the form of URI. These are defined in part 3 of this specification.

	/wsa:ReferenceParameters
	The wsa end-point reference parameters MUST be made up of the following HL7 elements from the HL7 message in the SOAP body in both the request and response:

· Sending Device Id (CommunicationFunctionSnd type)

· Receiving Device Id (CommunicationFunctionRcv type)
For the SOAP binding, each reference parameter becomes an element within the SOAP:Header block. The namespace (HL7, in this case) for the elements is included in the SOAP Envelope element.

	/wsa:From
	Defined by the caller.

	Request Header

	/wsa:ReplyTo
	Defined by the caller.

	Response Header

	/wsa:RelatesTo
	Identifier in the modified form of a DCE UUID, as defined in Part A of this specification. This has a “uuid:” prefix.

2.6.6.2 HL7 SOAP Body

The body of the SOAP message contains the complete pseudo-HL7 interaction. This includes the HL7 Wrapper and Control Act as defined in part 3 and a payload defined by the application specific section within this specification. The request message includes the interaction root directly within the SOAP Body. For example:

<SOAP-ENV:Body>

<hl7:SET_RESOURCE_PERMISSIONS_INUK01>

</hl7:SET_RESOURCE_PERMISSIONS_INUK01>

<SOAP-ENV:Body>
As with standard HL7 responses, Pseudo-HL7 responses MUST be wrapped by a custom NASP element (in the HL7 namespace). As with standard synchronous HL7 messages this will be specific to the interaction and specified in part 3 of this document. For example:

<SOAP-ENV:Body>

<hl7:setResourcePermissionsResponse>

<hl7:SET_RESOURCE_PERMISSIONS_RESPONSE_INUK01>

</hl7:SET_RESOURCE_PERMISSIONS_RESPONSE_INUK01>

<hl7:setResourcePermissionsResponse>

</SOAP-ENV:Body>
2.6.6.3 Faults

With one exception Pseudo-HL7 message interactions do not use standard SOAP and [WS-A] fault handling. An Pseudo-HL7 exception is always returned to the sender as a SOAP “success”. In that the MIM defines the necessary application messages to be sent in case of a fault. Such application messages also include exceptions associated with processing the (SOAP body component of) message.

The exception to this behaviour is when a receiving SOAP handler throws a SOAP exception not specific to the processing of the Pseudo-HL7 message. In this case a SOAP fault is generated as per 2.6.5.3 Faults and 2.7.1 General SOAP Errors. Where exceptions relate to the contents of WS-Addressing elements the exception generator is required to format SOAP Faults as per section 4 of [WS-A].
2.6.6.4 Pseudo-HL7 SOAP Message sample

The following shows an example of a web service request.

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns:hl7="urn:hl7-org:v3">

<SOAP-ENV:Header>

<wsa:MessageID>uuid:6B29FC40-CA47-1067-B31D-00DD010662DA</wsa:MessageID>

<wsa:Action>urn:nhs:names:services:lrs/ SET_RESOURCE_PERMISSIONS_INUK01</wsa:Action>

<wsa:To>https://synch.nis1.national.ncrs.nhs.uk/syncservice/tms</wsa:To>

<wsa:From>

<wsa:Address>http://myMSH.com/pds/myPage.asmx</wsa:Address>
</wsa:From>

<hl7:communicationFunctionRcv>

<hl7:device>

<hl7:id root="1.2.826.0.1285.0.2.0.107" extension="ZZZ999-100000000900001"/>

</hl7:device>

</hl7:communicationFunctionRcv>

<hl7:communicationFunctionSnd>

<hl7:device>

<hl7:id root="1.2.826.0.1285.0.2.0.107" extension="ZZZ000-100000000800001"/>

</hl7:device>

</hl7:communicationFunctionSnd>

<wsa:ReplyTo>

<wsa:Address>http://myMSH.com/pds/myPage.asmx</wsa:Address>

</wsa:ReplyTo>

</SOAP-ENV:Header>

<SOAP-ENV:Body>
<!—HL7 Wrapper + Pseudo HL7 message here -->
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Response example

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing" xmlns:hl7="urn:hl7-org:v3">

<SOAP-ENV:Header>

<wsa:MessageID>uuid:6669FFFF-CA47-1067-B31D-00DD010662DA</wsa:MessageID>

<wsa:Action>urn:nhs:names:services:lrs/SET_RESOURCE_PERMISSIONS_RESPONSE_INUK01</wsa:Action>

<wsa:To>http://myMSH.com/pds/myPage.asmx</wsa:To>

<wsa:From>

<wsa:Address>https://synch.nis1.national.ncrs.nhs.uk/syncservice/tms</wsa:Address>
</wsa:From>

<hl7:communicationFunctionRcv>

<hl7:device>

<hl7:id root="1.2.826.0.1285.0.2.0.107" extension="ZZZ999-100000000900001"/>

</hl7:device>

</hl7:communicationFunctionRcv>

<hl7:communicationFunctionSnd>

<hl7:device>

<hl7:id root="1.2.826.0.1285.0.2.0.107" extension="ZZZ000-100000000800001"/>

</hl7:device>

</hl7:communicationFunctionSnd>

<wsa:RelatesTo>

uuid:6B29FC40-CA47-1067-B31D-00DD010662DA

</wsa:RelatesTo>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<hl7:setResourcePermissionsResponse>

 <!—HL7 Wrapper + Pseudo HL7 message here -->

<hl7:setResourcePermissionsResponse>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

2.6.7 MHS Behaviour

The MHS Sender and Receiver behaviour in Web Service Mode is basically a specialisation of the Message Mode behaviour. The Web Services mode involves either one-way or request-reply interactions over a single HTTPS connection.

2.6.7.1 Sender Behaviour

The Sender is responsible for building a correctly formed message (SOAP and payload) according to this specification. The Sender is also responsible for handling any error conditions, including timeouts, under the assumption that the Receiver will not support reliable message processing. Should a web service represent update functionality, the Sender MUST understand that a lost response or a timeout MAY imply that the Receiver has already applied the update
. In such a case the Sender must ensure that re-applying the update represents valid behaviour from the perspective of the Receiver. If this is not acceptable then the update function should instead be transported using reliable Message Mode.

The basic behaviour for sending a request to a web service is as follows:

· The Sender builds a web service request based on the message schema(s) and the header elements defined here.

· An HTTPS connection is opened to the service port defined by the address in the SDS or WSDL. The Sender will adhere to the HTTP bindings defined in 2.8 Transport Protocol Bindings.
· The SOAP message is transported along the HTTPS connection.

· The response (if any) will be produced over the same connection and will conform to the structure of the output message schema.

The Sender implements the following specific error behaviour:

· The Sender may timeout the request after an implementation specific time. The Sender may choose to retry the request, but MUST understand that the Receiver will not eliminate duplicates. Alternatively, the Sender may communicate the timeout to the layer above.

· If the Sender receives a response containing any SOAP:Fault error the Sender MUST correct the error before re-sending the response.

2.6.7.2 Receiver Behaviour

The Receiver MHS node owns the implementation of the web service. It is the responsibility of the Receiver to mediate between the XML representation of the service and the service’s native interface (any marshalling and unmarshalling required). The Receiver must also manage the transfer of HTTP Fault and application fault information back to the Sender. The Receiver will implement the HTTP fault as per the Web Service Interoperability Organisation’s Basic Profile [WSI]. The Receiver MHS node will not implement any other reliable messaging behaviour.

During processing a receiver MHS node handling WS-Addressing elements will exchange the To and the From elements for input to the response message. As defined elsewhere the From element MUST be identical to the ReplyTo hence making the contents of the To element on the response also equivalent to the ReplyTo of the original request.

The basic behaviour for receiving a request for a web service is as follows:

· The Receiver accepts a request via an HTTP POST. The HTTP connection remains open.

· The Receiver will respond with any HTTP errors if required.

· The XML is checked for SOAP-specific errors. Any errors discovered are sent back via the SOAP:fault element.

· The payload is transformed (if necessary) into the native format for the service interface.

· The Receiver uses the root element to determine the location of the web service.

· The service is invoked.

· The Receiver marshals the response from the service into an XML message consistent with the web service mode definition, including the creation of valid SOAP header elements. The response is sent back to the Sender on the HTTP connection already available.

The Receiver implements the following specific error behaviour:

· The service may generate an application error (that is an error that is opaque to the MHS). In such a case, the Receiver should implement the fault handling behaviour defined earlier in this section.

· If the service request was successful but the Receiver could not return the response to the Sender, the response should be discarded. Furthermore, no service roll-back processing should be initiated by the MHS node if already outside a transaction.

2.7 SOAP Binding
The MHS uses SOAP envelopes to carry Business system messages in both ebXML and Web Service modes. This section provides a definition of the common structures used for SOAP bindings.

The following define specific SOAP requirements:

· SOAP 1.1 MUST be supported by all clients and servers. SOAP 1.2 MAY be supported only with agreement by all parties.
· An MHS SHOULD send UTF-8 encoding. Other encodings UTF-16, ISO-8859-1 and ISO-8859-15 are MAY be accepted by the Spine. However, UTF-8 will always be returned from the Spine.
· SOAP Messages MUST use document/literal style.
· Service providers MAY provide WSDL that describes the service interface where Web Service mode is used.

· SOAP messages and WSDL SHOULD conform to [WSI]. Exceptions will be documented in this specification where appropriate.

· The message content MUST be carried in the SOAP:body as an encoded type of literal (this is defined in WSDL as SOAP:body/@use=”literal”). Literal implies that each message part references a concrete schema (defined using either the element or type attributes of the SOAP:body in a WSDL definition). As a result WSDL definitions need not include an encodingStyle.
2.7.1 General SOAP Errors
A SOAP processor MAY generate a SOAP Fault if it is unable to process the message
. The MHS Receiver MUST handle SOAP faults. SOAP fault handling MUST be done in accordance with [SOAP]. The Fault element MAY contain MHS-specific sub-codes in the detail element (see 2.6 MHS Web Service Mode for details). See the following table for more detail.
	SOAP Value

	Reason Text

	VersionMismatch
	Invalid namespace found in envelope.

	MustUnderstand
	MustUnderstand element not supported.

	Client
	Message was incorrectly formed or did not contain the correct information to proceed.

	Server
	The message could not be processed for reasons not directly attributable to the contents of the message, but rather due to the processing of the message.

2.8 Transport Protocol Bindings

This section specifies the communications protocol bindings for MHS messages, for the following communications protocol:

· HTTP
2.8.1 HTTP Bindings

All MHS nodes MUST support at least HTTP Version 1.1 (RFC2616).

When messages contain SOAP envelopes, their transmission MUST adhere to the SOAP 1.1 HTTP binding. In this specification, all HTTP messages carry at least SOAP envelopes.

HTTP applications MUST use the media type “text/xml” or “application/xml”, according to RFC 2376, when including SOAP entity bodies in HTTP messages.

Although SOAP might be used in combination with a variety of HTTP request methods, this binding only defines SOAP within HTTP POST requests. The Sender MUST address the POST to the next HTTP host in the path to the destination (either an Intermediary or the Receiver). The MHSHandlerURI and MHSHTTPServerHost are obtained from the binding information in the SDS.
Post = "POST" MHSHandlerURI

Host = “Host:” MHSHTTPServerHost

The Content-Type MUST be a multi-part MIME header type when the message contains multiple MIME parts.

Content-Type = "Content-Type:" “multipart/related; “boundary=” BoundaryName “; Type=Text/XML;” “start=” StartTag

The SOAPAction MUST address the destination (the Receiver), not any intermediaries on the route. The SOAPAction HTTP request header field is formatted as follows:

soapaction = "SOAPAction:" [<"> ServiceReferenceURI <">]

ServiceReferenceURI = “urn:”
 <Service> “/” <Action>

where Service and Action are obtained from the following sources:

· In the case of MHS ebXML Mode, these are the ebXML elements Service and Action respectively.

· In the case of MHS Web Service Mode, is a direct copy from the soapaction from the WSDL definition.

SOAP HTTP follows the semantics of the HTTP Status codes for communicating status information in HTTP. For example, a 2xx status code indicates that the client's request including the SOAP component was successfully received, understood, and accepted, etc.
In case of a SOAP processing error while processing the request synchronously, the SOAP HTTP server MUST issue an HTTP 500 "Internal Server Error" response and include a SOAP message in the response containing a SOAP Fault element indicating the SOAP processing error.
Business faults (i.e. those that are not described in the SOAP fault element) will be returned using a 2xx HTTP status code, typically containing a business level message such as an HL7 MCCI.

2.8.2 Network Protocols

The specification of protocols below the HTTP layer is not the subject of this specification.

2.9 Other Protocols

2.9.1 Distributed Time

SPINE provides an external NTP service that allows LSPs and NASPS to co-ordinate time with SPINE. This service supports up to five NTP servers for each LSP and NASP, and providers SHOULD co-ordinate time on their systems with these local NTP servers and not directly with SPINE. The SPINE NTP service supports associations formed using NTP version 3 with MD5 mutual authentication. All Spine servers are based upon GMT/UTC.
Note that all transport related ‘time’ attributes, i.e. all times in the ebXML headers, HL7 Wrapper and WS-Addressing headers, MUST be provided in GMT / UTC.
2.9.2 DNS

The N3 network provides two options for name resolution—an iterative and a recursive service. The iterative service provides responses to queries for SPINE names with NS records listing the SPINE external DNS servers. These records will have a long time to Live (TTL). The recursive service provides responses to queries for SPINE names with A records giving an individual IP address to be used. These records will have a short TTL.

Endpoints MUST use the N3 DNS service to resolve external SPINE names. Endpoints SHOULD use the iterative name service available through N3 to resolve SPINE names. Endpoints MAY use the recursive service, but correct operation under all failure conditions cannot be guaranteed for users of the recursive service. Additional delay may also be introduced when using the recursive service.

Endpoints MUST respect the TTL of DNS responses when caching the responses to SPINE queries. Caches SHOULD be maintained only within DNS servers, and not on local machines.

Where endpoints use the iterative service the DNS service for SPINE names, all NS references returned MUST be tried before considering a query for a SPINE name to be invalid.
Health System

 NHS MHS

National Service

 NHS MHS

Network

MHS-MHS

Protocol Interface

Service Message

MHS Message

Sender

Receiver

Network

Protocols

Network

Protocols

HL7 Message and

Protocol Interface

Network Packets

Network Packets

MHS Message

Service Message

MIME Part

MIME Parts

hl7:MessageWrapper

SOAP-ENV:Envelope

SOAP-ENV:Body

SOAP-ENV:Header

eb:MessageHeader

eb:Manifest

hl7:ControlAct

eb:Acknowledgement

eb:ErrorList

eb:other

hl7:Payload

Communications Protocol (HTTP)

Communications Protocol (HTTP)

MIME Parts

hl7:MessageWrapper

SOAP-ENV:Envelope

SOAP-ENV:Body

SOAP-ENV:Header

eb:MessageHeader

eb:Manifest

hl7:ControlAct

eb:Acknowledgement

eb:ErrorList

eb:other

nasp:[A NASP

service message]

MIME Part

Communications Protocol (HTTP)

SOAP-ENV:Envelope

SOAP-ENV:Body

hl7:NASPWrapper

SOAP-ENV:Header

hl7:MessageWrapper

hl7:ControlAct

hl7:Payload

wsa:elements

wsa:elements

hl7:HL7 EPR

Communications Protocol (HTTP)

SOAP-ENV:Envelope

SOAP-ENV:Body

SOAP-ENV:Header

nasp:[A NASP Service

Message]

wsa:elements

nasp:messageHeader

wsa:elements

Communications Protocol (HTTP)

SOAP-ENV:Envelope

SOAP-ENV:Body

SOAP-ENV:Header

hl7: HL7 queries specification.by the individualL7 Wrapper and an HL7 Control act containin, in the subject.hese mesMessageWrapper

hl7:ControlAct

CRS:A NASP

Service Message

wsa:elements

wsa:elements

hl7:HL7 EPR

hl7:NASPWrapper

� Note that error codes are passed between the MHS and the application. However, these are included in the EIS to ease implementation as an appendix only. Logically they are still within the MIM domain.

� Processing of the header on receipt of a message SHOULD involve removal of the header prior to passing to the next layer.

� In a small number of scenarios an actor asynchronously retrieving state from the Spine rather than updating data on Spine.

� There are possible circumstances where the Spine is unable to return a response to the sender. The Spine will use both ebXML retries and “slow retry” to return the response. However, if these fail the problem is dealt with manually.

� There is no behaviour defined in [MIM] for HL7 “retries”. This is left up to implementers.

� This is a standard LDAP OID for a person’s common name.

� This is a standard LDAP OID for a organisation’s name.

� Note, in the case of ETP and GP2GP version 1.5—which implements [MIM3.1.07]—the applicable Application Acknowledgement is MCCI_IN010000UK12.

� See the description of the Application Acknowledgement in the Infrastructure section of the [MIM].

� For a definition of “business document flow” see [ebXML-BPSS].

� Note that PersistDuration is an attribute of retry behaviour at the ebXML layer only. It does not relate to retry processing at the HL7 layer or above.

� These types also apply to Chunked and Sequenced Large Messages as in part 9 of this specification.

� The size of additional-attachments is defined as the “on-the-wire” size before any encryption has taken place and after the additional of HTTP headers. Size is measured after content transfer encoding.

� There is a temporary requirement to reduce the maximum message size from 25MB to 5MB. This restriction will be lifted in a future release.

� This concept of Accredited Systems did not exist for P1R1. Therefore, it is RECOMMENDED that systems that meet this definition but do not implement any 2007-A services should not be required to behave as described here.

� With the exception of Spine.

� This architecture does not mandate the placement of the HL7 processor logical component. It is possible for HL7 behaviour (formats and protocols) to be handled centrally in the MHS, or for each system to provide their own HL7 handling. Or, even, separated between the two.

� [WS-A] is not (yet) accepted as a W3C recommendation, and therefore there is a certain risk that the specification will change or that it will be supplanted by a competing specification.

� Although identical to the wsa:From element this element is required by the WS-Addressing element whenever a reply is expected, this being the case for all Spine web service requests.

� Note that the wsa:Action element is not currently explicitly specified by a separate wsa:Action property in a Spine WSDL. The SOAPAction property of a WSDL will fulfil this function.

� Roughly equivalent to the HL7 Transmission Wrapper extensions added to the HL7 Web Service messages.

� Note that the nasp prefix is contingent and may vary as per namespace convention.

� Note that the wsa:Action element is not currently explicitly specified by a separate wsa:Action property in a Spine WSDL. The SOAPAction property of a WSDL will fulfil this function.

� Note that to date none of the available Web Services perform update functionality.

� SOAP Faults may be generated by Intermediary MHS nodes.

� The value is a fully qualified name and therefore MUST preceded by the namespace reference of the SOAP envelope.

� Note that the prefixed “urn:” string is optional and can be omitted from the ServiceReferenceURI. This is because the majority of Service names already contain an “urn:” prefix.

	Copyright © 2018, NHS Digital
	
	Page 2 of 65

