COMMERCIAL - IN CONFIDENCE
	NHS CFH National Spine
	COMMERCIAL - IN CONFIDENCE
2087 External Interface Specification: Part 6 Spine Security Broker
	Issue 12.2 Draft A
29th January 2009

[image: image10.jpg]

NHS CFH National Spine
Requirements, Design and Delivery
	2087
External Interface Specification: Part 6 Spine Security Broker

Issue 12.2 Draft A
29th January 2009
Copyright

© British Telecommunications plc 2008
Registered Office: 81 Newgate Street, London EC1A 7AJ

Confidentiality

All information in this document is provided in confidence for the sole purpose of adjudication of the document and shall not be used for any other purpose and shall not be published or disclosed wholly or in part to any other party without BT's prior permission in writing and shall be held in safe custody. These obligations shall not apply to information which is published or becomes known legitimately from some source other than BT.

Many of the product, service and company names referred to in this document are trademarks or registered trademarks.

They are all hereby acknowledged.

Notice

To the extent that this document contains any information concerning clinical safety (such term having its ordinary meaning until a specific definition may be agreed upon by NHS CFH and the Contractor) or any other information not specifically mandated by the Project Agreement, it is shared by the Contractor with NHS CFH on a voluntary, Confidential and 'without prejudice' basis for the purpose of informing NHS CFH.
Distribution

	Spine Programme Management Office
	1, Sovereign Street,
Leeds,
LS1 4BT

Document Control

	Title
	2087 External Interface Specification: Part 6 Spine Security Broker

	Author
	Simon Gordon

	Doc Ref
	2087 EIS12.2--Part 6--SSB.doc

Note: The document history is held in part one of this document.

Table of Contents

86
Spine Security Broker

86.1
Key Terms

96.2
Overview

96.3
Introduction

106.4
Workstation Components

106.4.1
Smartcard Middleware

116.4.2
Launch Client

116.4.3
Access Client

116.4.4
Token Store

116.4.5
Client

126.4.6
Client Signing Interface

126.5
Server-side Components

126.5.1
Authentication Server

136.5.2
Extended Login Module

136.5.3
Identity Server

136.6
SSB Authentication and Authorisation Limitations

146.7
SSB Authentication and Authorisation Storyboard

156.7.1
Use Cases - Generic Use Case

186.7.2
Application Use Cases

196.7.2.1
Case 1: Smartcard Insertion and Removal

216.7.2.2
Case 2: Non-Web Application - Client-Side

236.7.2.3
Case 3: Non-Web Application - Server-Side

256.7.2.4
Case 4: Browser Accesses a Web Application

276.7.2.5
Case 5: Requesting User Roles and Selection of Current Role

296.8
Session Management

296.8.1
Introduction

296.8.2
Session Structure

336.9
SAML

336.9.1
SAML Standards

336.9.2
2008-A Changes

346.9.3
Introduction

346.9.4
Header Block

346.9.4.1
Header Block Structure

346.9.5
Person Block

356.9.5.1
Person Block Structure

356.9.5.2
Session Role

356.9.5.3
SSB Mode and Shared Authentication

376.9.6
Job Role Profile Blocks

386.9.6.1
Job Role Block Structure

396.9.7
SAML Assertion Examples

396.9.7.1
John Doe – Medical Director

446.9.7.2
Joanna Doe – Nurse

516.9.7.3
Notes

516.9.8
Field Lengths

516.9.8.1
Background

526.9.8.2
Information Sources

526.9.8.3
Field Length Table

546.9.9
SAML Interfaces

546.9.9.1
SAML Servlet

546.9.9.2
SAML Servlet Overview

566.9.9.3
Interface Specification

586.9.10
Sample SAML Client Code

586.10
Client Signing Interface

586.10.1
Overview

596.10.2
Client Signing Interface API

606.10.3
Support and Compatibility

606.10.3.1
PKCS#11 API

626.10.4
Storyboard

636.10.5
Signing Process Pseudo-Code

676.10.6
Application Responsibilities

676.10.7
Single or Bulk Signing

686.11
–Left Blank Intentionally

686.12
Secure Spine Communications

686.12.1
Communication Types

686.12.2
Communication Security Requirements

696.12.3
Communications Security Solution

696.12.4
TLS Solution

706.12.5
Messaging Security

716.12.5.1
Certificate Revocation Check (CRL)

716.12.5.2
Messaging Certificate Validation (Simple DN Check)

726.12.5.3
Accredited Sender Checks

6 Spine Security Broker
6.1 Key Terms

	Term
	Description

	Assertion
	An assertion is a package of verified security information that supplies one or more statements concerning a subject's authentication status, attributes or role based access information.

	Content Commitment
	Electronic information that is presented to a user which they then digitally sign using a credential on their smartcard. The purpose is to replace a handwritten signature with an electronic equivalent such that if the user later denies a particular signing (i.e. repudiates the action of signing the information), there is sufficient evidence to establish the signing took place.

	SAML
	SAML is an open-standard protocol that uses an XML framework to exchange security information between an authority and a trusted partner site. The security information concerns itself with authentication status, role based access information and subject attributes. The Organisation for the Advancement of Structured Information Standards (OASIS) drives the development of the SAML specifications.

	Session
	A session is a data structure held in the Identity Server memory that contains information about an authenticated user.

	Session ID
	A session identifier (ID) is an opaque, globally unique string that programmatically identifies a specific session instance. With the session ID, a resource is able to retrieve session information.

	SSO Token
	An SSOToken is a data structure, defined by the SSO API that represents a snapshot of the session local to the particular application’s memory. (The token is only held within the SSB server)

	Token ID
	A pointer to the SSO Token held in the Identity Server. This is sent back to the Identity Agent and used as a parameter in API calls.

6.2 Overview

This specification is intended for use by IT administrators and custom software developers who implement the requirements of NPfIT Information Governance.

The SSB provides a number of services for single sign-on (SSO), provision of role based information and a client signing interface used for the purposes of Content Commitment.

Applications wishing to participate in these services can do so through both C and Java interfaces.

For detailed reference information on the APIs see the “External Interface Specification – Part 7 - SSB API Supplement”.

The SSB uses SAML to exchange authentication, authorisation decisions and attribute information.
6.3 Introduction

The SSB provides services for the security needs of both Web-based and non-Web-based applications. It is delivered in three main building blocks.

· The first is the Identity Server, which provides the core functionality of the central SSB Service. The Identity Server serves up SSO Tokens and manages the sessions for users who have been successfully authenticated.

· The second is an Identity Agent (IA), which resides on the User workstation. The Identity Agent mediates the authentication transaction and serves subsequent User information on demand as part of the application-orientated authorisation process.

· The third is a Client Signing Interface, which provides client side digital signing functions for the purposes of Content Commitment. This interface primarily uses cryptographic functions that execute on a user’s smart card.

User authentication may only occur if the User is formally registered to the Spine. User registration to the Spine includes creation of a User profile, stored in the SDS, containing the User’s roles and other information that the Authority or Service deems necessary to make appropriate data access decisions. Figure 6‑1: SSB Deployment Model represents a deployment model of the SSB components, and shows the interfaces described in this section.

[image: image1]
Figure 6‑1: SSB Deployment Model
6.4 Workstation Components
The workstation components are referred to by the collective description of “Identity Agent”. These components are responsible for initiating the User authentication process, interacting with the server-side components and storing the Token ID.

6.4.1 Smartcard Middleware

The smartcard middleware provides access to the smartcard credentials for the client-side authentication components.
6.4.2 Launch Client

The Launch Client detects the presence of a smart card and initiates either a logon when a smart card is inserted or a logoff when the smart card is removed.

6.4.3 Access Client

The Access Client performs three roles. It authenticates the User’s Passcode to unlock the smart card, if the Passcode is valid. It interacts with the server-side component, Authentication Server, to receive - and have digitally signed by the User’s private key - a data string that is returned to the Authentication Server for signature validation. The third function is to receive, and store in the Token ID Store, the Token ID.

6.4.4 Token Store

The Token Store holds the Token ID and is the referral point for applications that require the SSO Token to verify User authentication information. It is a memory resident component of the Identity Agent.

6.4.5 Client

The Client component is an optional deployable third party component for accessing SSO Token information.

Web applications that want to participate in the SSO mechanism provided by the SSB would need to retrieve the Token ID using the Ticket API in much the same way as non-web applications do. The SSO token should then be passed through the web browser to the web application. One possible mechanism for this is an ActiveX or Java “client” control running within the browser that calls the Ticket API.

6.4.6 Client Signing Interface

The Signing Interface is provided through a PKCS#11 API (also known as Cryptoki). PKCS#11 provides applications with an interface for a wide variety of cryptographic capabilities using hardware security modules such as, but not limited to, smart cards. It was originally developed by RSA and is published as a standard that many smart card middleware support.

For the purposes of the Content Commitment, it provides the ability to digitally sign information based on an asymmetric private key and associated digital certificate stored on the user’s smart card.

6.5 Server-side Components

The server-side components are referred to by the collective description of “SSB Service”. These components are responsible for processing authentication requests from the Identity Agent. There are three server-side modules:

· Authentication Server;

· XML Processor; and

· Identity Server.

The first two of these modules, together constitute a “Pluggable Authentication Module” (PAM) to the Identity Server.

6.5.1 Authentication Server

The Authentication Server sends a text string to the workstation-located Access Client for signing and on receipt of the signed text string validates the User’s signature.
The Authentication Server also acts as the interface between the server-side components and the workstation components.

It hands over, via the XML Processor, to the Identity Server for the creation of the SSO Token and the SAML Assertions.

It transmits the Token ID to the Access Client and receives notification of card removal from the Launcher. It also checks that the certificate is valid by using the CRL published by the Certificate Authority (CA).

6.5.2 Extended Login Module
ExtendedLoginModule is a plug-in module that plugs-into the ID server. The GAS sends token requests to this module during the authentication process. This module replaces and extends the previous GemplusLoginModule.
6.5.3 Identity Server

The Identity Server hosts two components, Access Manager and the SAML Web Application. The Access Manager returns the Token ID to the Authentication Server. The SAML Service generates the SAML Assertions. It obtains User role information from the SDS and also undertakes Session Management

6.6 SSB Authentication and Authorisation Limitations

The SSB only addresses authentication for access to National services. It does not address authentication to local infrastructure, such as local networks and applications that do not communicate messages to the Spine.

The Spine authentication model is based on the issuance by the SSB of an SSO Token to the User following the user’s successful authentication to the SSB.

The SSO Token ID is downloaded to the authenticated User’s workstation by the SSB and this acts as a pointer for registered systems and services to obtain authentication and role based access details about the User.

It is the responsibility of the accredited system and local service providers to ensure that their systems and services use the authentication and RBAC information available through the Spine interfaces in their own access control contexts.

The SSB does not provide access controls to systems and services. The role of the SSB is to provide information on which such access control decisions may be made.

6.7 SSB Authentication and Authorisation Storyboard

Users must first of all be registered with the Authority. User registration includes the creation of a User profile, stored in the Spine Directory Service (SDS), containing the User’s roles and other information that the Authority or Service requires for making appropriate application or data access decisions.

The registered User accesses their workstation in the usual manner. The User is expected to have performed authentication to local infrastructure services prior to authenticating for the purposes of accessing the Spine and obtaining an SSO Token.

The Spine authentication process is initiated by the insertion of a smart card or when a User accesses a certified system or service. In the latter case, when the certified system or service cannot find a valid SSO Token for the User, the certified system or service shall prompt the User to logon by inserting their smart card. The sequence of events is as follows (see Figure 6‑2).

[image: image2.emf]Identity Server

Identity Agent

Client

Application

Server

Application

User 2. PIN 13. getTicket()

Smartcard

Reader

14. Token ID

15. Get SSO Token

16. Get SAML

Assertion

3. PIN

5. Signed UID/

PKI Credential

Ticket API

SSO API -C and Java/

SAML SDK or Servlet

(XML/HTTP)

7. Verify PKI Credential

Profile Lookup AND

Lookup SDS for user role

information

4. Check PIN, Issue

Signed PKI Credential

6. Signed UID/

PKI Credential

12. Token ID

1. Challenge

9. User roles

10. User selects role

8. User roles

11. Selected role

Figure 6‑2 - SSB Component Interactions
The Identity Agent (IA) presents the User with an authentication challenge (1), which requires the User to insert their smart card into the card reader (if not already present) and type their Passcode into the Passcode field (2).

By entering the correct Passcode, the User initiates a process by which the credentials plus the User’s UID are sent to the SSB Service for verification (3,4,5,6).

The User is authenticated by successful verification of the credentials (including on-line certificate revocation checks) and matching the UID against the User entry in the SDS (7).

The User is prompted to select a role from possible roles provided by the Identity Server (8, 9, 10, 11)
If the User is authenticated successfully, a Token ID is sent to the IA client through http response (12), over a TLS connection, to the User’s computer and stored in the IA’s memory space (not on disk). This is a random identification string, which is associated with the session token.

The SSO Token is available to applications to check the User’s authentication status and role profile by requesting the Token ID from the IA Token Store using getTicket() (13)and making the appropriate API calls to the Identity Server (not shown).

In the case of a server-based (as opposed to client) application, the Token ID is passed over a TLS connection to the server (14).

The application can use the SSB Service to validate the SSO Token (15) and obtain information about the User’s role profile (16).

6.7.1 Use Cases - Generic Use Case

This Use Case sets out the events and processes that occur to successfully identify a user and to determine their role(s).

The authentication of Users (from submitting credentials to provision of a SSO Token which contains a secure reference to the sign-on and relevant user security context) requires the collaboration of a number of SSB components. Figure 6‑3 provides a summary of the interactions.

[image: image3.wmf]

/ SSB Service

/ User

/ Health System

/ SmartCard

/ ID Agent

1 :

\

Access

\

2 :

\

Active Smart Card

\

3 :

\

Create Token

\

4 :

\

TokenID

\

5 :

\

Start Application

\

6 :

\

Get

Token ID

\

7 :

\

 Validate Token

\

8 :

\

 Get Assertion

\

Process credentials

provided from smart

card (UID,

Signature, Certificate...

Create attribute

assertion. Includes

reference to

assertion with UID

in token

Figure 6‑3 - Sequence of Authentication interactions.

	1
	User inserts their smart card or attempts to access a SPINE protected resource.

	2
	The IA prompts the User for a smart card and Passcode.

	3
	The SSB Service validates the User credentials and, if successful, establishes a Session.

SSB creates SSO Token that includes a number of Properties:

1. Unique User ID (UID)

2. Token ID
3. Session attributes, e.g. max_idle_time

It also creates an Attribute Assertion that includes the attributes:

a) Name

b) UID

c) OCS Code

d) Default Role

e) Job Role(s)

f) Organisation(s)

g) Business Function(s)

h) Area of work(s)

i) Workgroup(s)

	4
	A Token
 ID is passed back to the IA and stored in memory on User’s PC. This is a pointer to the SSO Token held in the Identity Server.

	5
	User starts an application.

	6
	Application obtains the Token ID from the IA (See Ticket API).

	7
	The application checks the validity of the token with the Identity Server.

Function: IsValidToken
C Interface

am_sso_is_valid_token(const am_sso_token_handle_t sso_token_handle)

Java Interface

SSOTokenManager.isValidToken(SSOToken token)

At this point applications can also retrieve session information by using the Token ID to get SSOToken values. The SSOToken contains information such as the authenticated principal name, authentication method, and session information (session idle time, maximum session time, etc.).

See the Part 7 - SSB API Supplement for further details on the SSO APIs.

	8
	The application ADF (Access control Decision Function) gets/parses the SAML Assertion for attributes using the methods AuthenticationQuery and AttributeQuery.

Package: com.sun.identity.saml

 com.sun.identity.saml.protocol
The application ADF processes User requests in its own context based on user information in the SSO Token and Assertion.

6.7.2 Application Use Cases

There are various scenarios for the deployment of applications, which access the SSB. This section outlines a number of Use Cases to illustrate some of these.

6.7.2.1 Case 1: Smartcard Insertion and Removal

[image: image4.wmf]User

Smart Card

ID Agent

SSB Service

Insert Card

()

Card Insert Event

()

Challenge

()

PIN and Live

/

Training mode

PKCS

#

7

Object

()

Token ID

Card Removal Event

()

Remove Card

()

Destroy Token

()

Create Token

Select Default Role

Select Default Role and Mode

Role Prompt

Figure 6‑4 - Smartcard insertion/removal

	Description
	Smartcard Insertion and Removal

	Pre-conditions
	Insertion

1. Desktop is already authenticated on the network

2. Identity Agent (IA) is running at the desktop

3. No SSO Token ID present

4. Card not inserted

Removal

1. Card inserted

2. SSO Token present

	Post-conditions
	Insertion
1. No application is yet instantiated (web or non-web)

2. SSO Token ID is available for both fat client and web browsers. To retrieve the Token ID a web browser will use an ActiveX control or Java script to call the Ticket API.

A non-web application will call the Ticket API via either a Java or ‘C’ language call.

3. User has a session role

Removal

1. No SSO Token present

	Steps
	Insertion

1. User inserts smartcard

2. IA detects insertion and SSB issues a challenge to the user

3. User enters Passcode and chooses Live (clinical care) or Training mode.
4. A digitally signed PKCS#7 object is sent, via the IA to the SSB for authentication

5. SSO Token ID is populated in the IA

6. User selects a session role for the session (Select default role)
Removal
1. User removes card

2. IA detects event

3. IA sends message to SSB to destroy the token

6.7.2.2 Case 2: Non-Web Application - Client-Side

[image: image5.emf]User Client App ID Agent SSB Service

Get Token ID

SSO Token ID

Return Token

Register Listener

SAML Assertion

Authorisation

Launch app

Validate Token

Get Assertion

Figure 6‑5 - Fat Client

	Description
	This is where the focal point of the application (i.e. the need to authenticate the user running the application) is at the client desktop.

	Pre-conditions
	1. User is authenticated i.e. a valid Token ID is present in the IA

2. User wants to launch a desktop application

	Post-conditions
	1. Application context to allow or deny user access

	Steps
	1. User launches desktop application

2. Application calls Ticket API to get Token ID

3. Token ID is returned

4. Application validates ticket by calling SSB Service to validate it

5. Application registers listener call-back function with SSB Service Application retrieves role information (SAML assertion) from SSB Service

6. Application determines authorisation based on role information

6.7.2.3 Case 3: Non-Web Application - Server-Side

[image: image6.emf]User Client Desktop ID Agent Server App

Launch app

Get Token ID

SSO Token ID

Validate Token

Return Token

Register Listener

Get Assertion

SAML Assertion

Authorisation()

SSB Service

SSO Token ID

Figure 6‑6 - Fat Server

	Description
	This is where the focal point of the application (i.e. the need to authenticate the user running the application) is at the back-end server.

	Pre-conditions
	1. User is authenticated i.e. a valid Token ID is present in the IA

2. User wants to launch a server application from the desktop

	Post-conditions
	1. Client and server application context to allow or deny user access

	Steps
	1. User launches application on the desktop

2. Client application calls IA Ticket API to get Token ID

3. Token ID is returned

4. Client application programmatically passes Token ID to application server (it’s up to the LSP to determine how this is achieved)

5. Application server validates ticket by calling the SSB Service

6. Application server registers listener call-back function with SSB Service

7. Application server retrieves role information (SAML assertion) from the SSB Service

8. Application server determines authorisation based on role information

6.7.2.4 Case 4: Browser Accesses a Web Application

[image: image7.emf]Browser Web App ID Agent

Get Token ID

SSO Token ID

Validate Token

Return Token

Register Listener

Get Assertion

SAML Assertion

Authorisation

SSB Service

Protected URL

Applet/Component

SSO Token ID

Set Session Cookie

Figure 6‑7 - Web Application
	Description

	Web applications use a browser component (e.g. ActiveX, Java Applet or JavaScript) to retrieve the Token ID from the IA. Where no token is available, the IA will call the SSB Service to do the authentication.

This will be the case for all child browser instances other than those in the same domain i.e. they will all have to request the Token ID via the API from the IA.

	Pre-conditions
	1. No Token ID is present in the IA

	Post-conditions
	1. Token ID is available via the IA for other web and non-web applications

	Steps
	1. Browser is pointed at an LSP page protected by the SSB mechanism

2. Web application renders page with browser component

3. No Token ID available – browser component calls IA

4. IA returns Token ID

5. Browser gets SSO Token as a string to set a session cookie

6. Browser component sends Token ID to the web application

7. Web application validates Token with an API call to the SSB Service

8. SSB service returns SSO Token

9. Web application registers a listener

10. Web application gets SAML Assertion. Training applications will use the Training Assertion URL.
11. On receipt of assertion, web application authorises access

6.7.2.5 Case 5: Requesting User Roles and Selection of Current Role

[image: image8.emf]User SSB Service App

Get Assertion

SAML Assertion

Evaluate Default Role

Authorisation

DisplayRoles

Select Role

Figure 6‑8 - Role Selection
	Description
	This is the case where an application needs to authenticate a user and determine the appropriate role to enable the user to proceed. This applies equally to both web and non-web, as well as client or server based applications.

	Pre-conditions
	1. User is authenticated – Token ID is present in the IA

2. Application has retrieved the Token ID and validated it using SSB Service resulting in an SSO Token being created within the application

	Post-conditions
	1. Application context where the appropriate role has been selected by the user

	Steps
	1. Using the SSO Token, the application retrieves the SAML assertion from SSB Service, which contains (amongst other things) the list of roles the user is permitted to assume

2. The application determines the session role is not appropriate

3. The LSP application constructs role selection display information and renders this for the user

4. User selects a role from the displayed list

5. The application determines if this is appropriate and either accepts this or asks the user to re-select from the list

6.8 Session Management

6.8.1 Introduction

Session Management is provided by the SSOToken functions. When a user is authenticated, they are allocated an SSO Token. Originally, this token was planned to be valid for a defined period of time, currently 2 hours, with a maximum idle time set to 30 minutes. Up to this release (unless otherwise notified), both these values are 10 hours.

It is the responsibility of authorised applications to make decisions based on the presence of the User's SSO Token. For example, if the token expires (either through timeout or deletion), the application must make a decision whether to maintain the User’s application session (for example cache it) or log the User off the application.
6.8.2 Session Structure

When a user is successfully authenticated they are assigned a valid session in the context of the SSB Service. This session contains a number of attributes and properties that define the user’s identity and some time-dependent behaviour (for example, the maximum time before the session expires). The following table details these attributes.

The session token contains the following fixed attributes concerning the authenticated user (most relevant to the SSB in bold but the others are available to LSPs in the event that a particular deployment scenario requires them):

	ID

	This is the Session ID, a randomly generated session identifier.

The Session ID is a variable-length datatype. Where implementations are not able to declare this as variable length, the attribute should be at least 254 bytes. Future releases of the specification may amend this length declaration.

	ClientDomain
	This is the DNS domain in which the client is located.

	ClientID
	This is the user DN or the application’s principal name.

	Type
	This is the user or application type.

	State
	This is the state of the session: valid, invalid, destroyed or inactive.

	MaxIdleTime
	This is the maximum time in minutes without activity before the session will expire and the user must re-authenticate.

	MaxSessionTime
	This is the maximum time in minutes before the session expires and the user must re-authenticate.

	MaxCachingTime
	This is the maximum time in minutes before the client contacts Identity Server to refresh cached session information.

	LatestAccessTime
	This is the last time the user has accessed the session resource

	CreationTime
	This is the time at which the session token was set to a valid state.

	Organization
	This is the DN of the organization to which the user belongs.

	Principal
	This is the DN of the user.

	Principals
	This is a list of names to which the user has authenticated. (This property may have more then one value defined as a pipe separated list.)

	UserId
	This is the user’s DN as returned by the module, or in the case of modules other than LDAP or Membership, the user name. (All Principals must map to the same user. The UserID is the user DN to which they map.)

	UserToken
	This is a user name. (All Principals must map to the same user. The UserToken is the user name to which they map.)

	Host
	This is the host name or IP address for the client.

	AuthLevel
	This is the highest level to which the user has authenticated.

	AuthType
	This is a pipe separated list of authentication modules to which the user has authenticated (i.e. module1|module2|module3).

	Role
	Applicable for role-based authentication only, this is the role to which the user belongs.

	Service
	Applicable for service-based authentication only, this is the service to which the user belongs.

	LoginURL
	This is the client’s login URL.

	Hostname
	This is the host name of the client.

	CookieSupport
	This attribute contains a value of true if the client browser supports cookies.

	AuthInstant
	This is a string that specifies the time at which the authentication took place.

	SessionTimedOut
	This attribute contains a value of true if the session has timed out.

	ClientType
	This is the device type of the client browser.

	Locale
	This is the locale of the client.

	CharSet
	This is the determined character set for the client.

	SSB Session Role UID
	This is the user’s session role as set at authentication time

	ssbMode
	This reflects the user’s choice to enter Live (clinical care) mode or Training mode.

0 = Live Mode

1 = Training Mode

<blank> = Implies Live Mode

6.9 SAML

The Security Assertion Markup Language (SAML) is used by the SSB as a means of exchanging information about user roles for authenticated users. It extends the information available beyond that contained in the SSO Token to include additional attributes contained in the SDS.

This section gives details of the SAML served by the SSB.

6.9.1 SAML Standards

The SSB currently supports SAML 1.0. SAML standards can be found at http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security

6.9.2 2008-A Changes

The SAML interface has not changed for 2008-A.
6.9.3 Introduction

The SAML assertion is a flat file that presents name/value pairs.

When an attribute value is empty then no name/value pair will be displayed

The SAML assertion is formed in three parts:

· Header block

· Person block

· Job Role Profile block or blocks.
6.9.4 Header Block

There will be one header block. The block will contain one name/value pair.

6.9.4.1 Header Block Structure

	
	Name
	Attribute
	Cardinality

	1
	Assertion Version
	ssbAssertionVersion
	1

6.9.5 Person Block

There will be one person block. The block will contain four name/value pairs.

6.9.5.1 Person Block Structure

	
	Name
	LDAP Attribute
	Cardinality

	1
	Full Name
	cn
	1

	2
	User’s Unique Identifier
	uid
	1

	3
	OCS Practitioner Code
	nhsOcsPrCode
	0..1

	4
	SSB Session Role Uid
	ssbSessionRoleUid
	1

	5
	SSB Mode
	ssbMode
	0..1

6.9.5.2 Session Role

At authentication time the user’s session role is stored as a property (“SSB Session Role UID”) in the SSO Token. The “SSB Session Role UID” property value will be returned by the SAML assertion.

The user’s session role may be obtained by obtaining an SSO Token then locally performing a getProperty() call against that SSO Token. An alternate method would be to obtain a SAML assertion from the Spine and parse that assertion locally for the SSB Session Role UID.
6.9.5.3 SSB Mode and Shared Authentication
Shared Authentication (including TraMS) is based on a layered approach. The layers that are applicable to consumers of this document are set out, below.

User Authentication

Users must authenticate exclusively for either Live use OR Training use.

An additional property (SSB Mode) will be added to the session structure for an SSO Token.

This custom property will reflect the user’s choice of authenticating to Spine for the purpose of ‘Training’ rather than for ‘Clinical Care’ (Live).

A user’s choice of SSB Mode will be part of the Token stored in the Spine for the duration of a user’s Spine session. The value may also be retrieved from the SAML assertion.
User Authorisation

Users cannot access Live systems or data when in Training Mode of Operation (and vice versa).

SAML is only served by the corresponding Servlet.

Two separate interfaces will be presented by the Live Spine IDM subsystem.

The existing interface will direct requests for User Authorisation Details to the existing Role Assertion Servlet for Live. Live applications will continue to access the existing interface.

· The second interface will direct requests for User Authorisation Details to a new Role Assertion Servlet for TraMS. Training applications must be configured to use this interface.

SSB Mode

The SSB Mode flag value is one of the following:
‘1’ (the digit one) – The user has opted to authenticate for Training only

‘0’ (the digit zero) – The user has opted to authenticate for regular Live (clinical care) mode only

<empty> (no ssbMode SAML or token attribute) – The user is using a previous SSB Client, hence is operating in Live mode only.

Assertion URLs
The current SAML assertion URL is configured to be:

/SAML/RoleAssertion
The Training assertion URL will be:

/SAML/TrainingRoleAssertion

6.9.6 Job Role Profile Blocks

There will be a job role profile block for each fully qualified role profile.

· Information is taken from LDAP Organisation Person (OP) & Organisation Person Role (OPR).

· The nhsIdCode entry in the LDAP Organisation Person (OP) level is returned first. This a mandatory attribute and will be the first attribute in a job role profile block. The order of attributes within the block is not important. Consuming applications should NOT be coded to take order into account. They should extract each role profile block and then extract the required attributes from it.
· The number of fully qualified roles profiles equals the total number of active roles found at the OPR level for the user concerned.
· An active role is one where:

For the Person

· nhsPersonStatus = 1
AND for the OrganisationalPerson

· nhsOrgOpenDate = null OR nhsOrgOpenDate <= today
AND for the OrganisationalPerson
· nhsOrgCloseDate = null OR nhsOrgCloseDate > today
AND for the OrganisationalPersonRole
· nhsOrgOpenDate = null OR nhsOrgOpenDate <= today
AND for the OrganisationalPersonRole

· nhsOrgCloseDate = null OR nhsOrgCloseDate > today
· Note that the date format for nhsOrgOpenDate and nhsOrgCloseDate is YYYYMMDD.

· An nhsPersonStatus <> 1 means that the person is inactive.

· The hierarchical nature of Job Role profiles is represented in a flat file structure by combining attributes from each level of the hierarchy into a single name/value pair.

6.9.6.1 Job Role Block Structure

	
	Name
	LDAP Attribute
	Cardinality

	1
	NHS Organisation
	nhsIDCode
	1

	2
	Organisation Name
	o
	1

	3
	Job Role
	nhsJobRole
	1

	4
	Areas of Work
	nhsAreaOfWork
	0..*

	5
	Work Groups
	nhsWorkGroups
	0..*

	6
	Areas of Work Codes
	nhsAreaOfWorkCodes
	0..*

	7
	Business Functions
	nhsBusinessFunctions
	0..*

	8
	Work Groups Codes
	nhsWorkGroupsCodes
	0..*

	9
	Job Role Code
	nhsJobRoleCode
	1

	10
	Role Profile Code
	uniqueIdentifier
	1

	11
	Business Functions Codes
	nhsBusinessFunctionsCodes
	0..*

Note: The presence of an nhsIDCode attribute (which is mandatory) can be used to determine the start of a Job Role Block. This is the key field to use when parsing the Job Roles structure into individual Job Role Blocks.
Workgroups are associated with individual Job Roles by parsing the Job Role structure; the nhsWorkGroupsCodes attribute (optional) shows which Work Groups the Job Role is a member of.
6.9.7 SAML Assertion Examples

· Job Role and Areas of Work will each have the full hierarchy of their name and code in the role profile.

· Business Functions are not hierarchic.

· Work Groups will be presented as a list without hierarchical information. This is because, although work groups are hierarchical, they are too complex to be held in a single attribute. Work group elements will only hold the terminal or leaf names and codes.

6.9.7.1 John Doe – Medical Director

Here is an example of a Medical Director with one role in his professional life:

· He is a director in respiratory medicine in Ward 4 at East Somerset NHS Trust.

· His areas of work are: Sleep Physiology and Respiratory Physiology.

· His business functions are: Caldicot Guardian and Emergency Care.

Example Data

	Attribute
	Example data

	ssbAssertionVersion
	1.0

	cn
	Doe John B

	uid
	123456789012

	nhsOcsPrCode
	B85037

	ssbSessionRoleUid
	210987654321

	ssbMode
	0

	nhsIDCode
	B85037

	O
	Yeovil District Hospital

	nhsJobRole
	“M&D”:”Management”:”Medical Director”

	nhsAreaOfWork
	“Medicine”:” Respiratory Medicine”:”Sleep Physiology”

	nhsAreaOfWork
	“Medicine”:” Respiratory Medicine”:” Respiratory Physiology”

	nhsWorkGroups
	“East Somerset NHS Trust”

	nhsWorkGroups
	“Ward4”

	nhsAreaOfWorkCodes
	P0010:Q0050:T0230

	nhsAreaOfWorkCodes
	P0010:Q0050:T0220

	nhsBusinessFunctions
	“Caldicott Guardian”

	nhsBusinessFunctions
	“Emergency Care”

	nhsWorkGroupsCode
	RA400000

	nhsWorkGroupsCode
	RA400042

	nhsJobRoleCode
	S0010:G0010:R0010

	uniqueIdentifier
	210987654321

	nhsBusinessFunctionsCodes
	B0010

	nhsBusinessFunctionsCodes
	B0040

Example Structure

[1 of 1]

Attribute Name: ssbAssertionVersion

Attribute Value: 1.0

[1 of 1]

Attribute Name: cn

Attribute Value: Doe John B

Attribute Name: uid

Attribute Value: 23D44D23

Attribute Name: nhsOcsPrCode

Attribute Value: B85037

Attribute Name: ssbSessionRoleUid
Attribute Value: 210987654321
Attribute Name: ssbMode
Attribute Value: 0
[1 of 1]

Attribute Name: nhsIDCode

Attribute Value: B85037

Attribute Name: o

Attribute Value: Yeovil District Hospital
Attribute Name: nhsJobRole

Attribute Value: “M&D”:”Management”:”Medical Director”

Attribute Name: nhsAreaOfWork

[1 of 2]

Attribute Value: “Medicine”:” Respiratory Medicine”:”Sleep Physiology”

[2 of 2]

Attribute Value: “Medicine”:” Respiratory Medicine”:” Respiratory Physiology”

Attribute Name: nhsWorkGroups

[1 of 2]

Attribute Value: “East Somerset NHS Trust”

[2 of 2]

Attribute Value: “Ward 4”

Attribute Name: nhsAreaOfWorkCodes
[1 of 2]

Attribute Value: P0010:Q0050:T0230

[2 of 2]

Attribute Value: P0010:Q0050:T0220
Attribute Name: nhsBusinessFunctions

[1 of 2]

Attribute Value: “Caldicott Guardian”

[2 of 2]

Attribute Value: “Emergency Care”

Attribute Name: nhsWorkGroupsCodes

[1 of 2]

Attribute Value: RA400000

[2 of 2]

Attribute Value: RA400042
Attribute Name: nhsJobRoleCode
Attribute Value: S0010:G0010:R0010

Attribute Name: uniqueIdentifier

Attribute Value: 210987654321

Attribute Name: nhsBusinessFunctionsCodes

[1 of 2]

Attribute Value: B0010

[2 of 2]

Attribute Value: B0040
6.9.7.2 Joanna Doe – Nurse

Here is an example of a Nurse with three roles in her professional life:

· She is a nurse consultant to the Somerset Partnership NHS and Social Care Trust, having special skills in a couple of paediatric areas, and able to prescribe non-controlled drugs.

· She is a community nurse for a local GP practice, using no special skills or business functions.

· She is a mental health counsellor for Taunton and Somerset NHS Trust, engaging in work with children in the hospital and also on working on a national team researching an aspect of mental health in young people. This team was set up by the Mental Health Services of Salford NHS Trust, but she is a member of it, and indeed can introduce new members to it. In this role she can also help patients sensitive about their mental health entries in their record to establish sealed envelopes.
For this session, she has chosen to be in ‘Training’ mode.
Example Data

	Attribute
	Example data

	ssbAssertionVersion
	1.0

	Cn
	Doe Joanna B

	Uid
	23D44D24

	nhsOcsPrCode
	B85038

	ssbSessionRoleUid
	210987654321

	ssbMode
	1

	nhsIDCode
	RH5

	O
	Somerset Partnership NHS and Social Care Trust

	nhsJobRole
	“Nursing & MW”:”Nurse”:” Nurse Consultant”

	nhsAreaOfWork
	“Medicine”:“Paediatrics”:“Paediatric Gastroenterology”

	nhsAreaOfWork
	“Medicine”:“ Paediatrics”:“Paediatric Neurology”

	nhsWorkGroups
	“Ward 3”

	nhsWorkGroups
	“Ward4”

	nhsAreaOfWorkCodes
	P0010:Q0030:T0100

	nhsAreaOfWorkCodes
	P0010:Q0050:T0230

	nhsBusinessFunctions
	“Prescriber Excluding Controlled Drugs”

	nhsBusinessFunctions
	“Emergency Care”

	nhsWorkGroupsCode
	RA500041

	nhsWorkGroupsCode
	RA400042

	nhsJobRoleCode
	S0030:G0100:R0570

	uniqueIdentifier
	210987654321

	nhsBusinessFunctionsCodes
	B0050

	nhsBusinessFunctionsCodes
	B0040

	nhsIDCode
	RH548

	O
	“SOUTHWOOD HOUSE”

	nhsJobRole
	“Nursing & MW”:”Nurse”:” Community Nurse”

	nhsWorkGroups
	“Taunton Road Medical Centre”

	nhsWorkGroups
	“Community Services”

	nhsWorkGroupsCode
	L8110200000

	nhsWorkGroupsCode
	RA400042

	nhsJobRoleCode
	S0030:G0100:R0700

	uniqueIdentifier
	1232456789012

Example data continued
	Attribute
	Example data

	nhsIDCode
	“RBA”

	O
	“Taunton and Somerset NHS Trust”

	nhsJobRole
	“Add'l Clinical Services”:” Mental Health”:” Counsellor”

	nhsAreaOfWork
	“Clinical Support”:“Counselling”:“Counselling”

	nhsWorkGroups
	“Study into Mental Illness In the Young”

	nhsWorkGroups
	“Paediatrics Ward”

	nhsAreaOfWorkCodes
	P0120:Q1120:T1960

	nhsBusinessFunctions
	“Sealed Envelope Control”

	nhsBusinessFunctions
	“Workgroup Membership Administrator”

	nhsWorkGroupsCode
	RA500028

	nhsWorkGroupsCode
	RMH00055

	nhsJobRoleCode
	S0070:G0370:R1550

	uniqueIdentifier
	084983098398

	nhsBusinessFunctionsCodes
	B0080

	nhsBusinessFunctionsCodes
	B0090

Example Structure

[1 of 1]

Attribute Name: ssbAssertionVersion

Attribute Value: 1.0

[1 of 1]

Attribute Name: cn

Attribute Value: Doe Joanna B

Attribute Name: uid

Attribute Value: 23D44D24

Attribute Name: nhsOcsPrCode

Attribute Value: B85038

Attribute Name: ssbSessionRoleUid
Attribute Value: 210987654321
Attribute Name: ssbMode
Attribute Value: 1

[1 of 3]

Attribute Name: nhsIDCode

Attribute Value: RH5

Attribute Name: o

Attribute Value: Somerset Partnership NHS and Social Care Trust

Attribute Name: nhsJobRole

Attribute Value: “Nursing & MW”:”Nurse”:” Nurse Consultant”

Attribute Name: nhsAreaOfWork

[1 of 2]

Attribute Value: “Medicine”:“Paediatrics”:“Paediatric Gastroenterology”

[2 of 2]

Attribute Value: “Medicine”:“ Paediatrics”:“Paediatric Neurology”

Attribute Name: nhsWorkGroups

[1 of 2]

Attribute Value: “Ward 3”

[2 of 2]

Attribute Value: “Ward 4”
Attribute Name: nhsAreaOfWorkCodes
[1 of 2]

Attribute Value: P0010:Q0030:T0150

[2 of 2]

Attribute Value: P0010:Q0030:T0100
<note that T0100 is Paed Gast>

Attribute Name: nhsBusinessFunctions

[1 of 1]

Attribute Value: “Prescriber Excluding Controlled Drugs”

Attribute Name: nhsWorkGroupsCodes

[1 of 2]

Attribute Value: RA500041

[2 of 2]

Attribute Value: RA500042

Attribute Value: nhsJobRoleCode

Attribute Value: S0030:G0100:R0570

Attribute name: uniqueidentifier

<of the preceding nhsJobRoleCode>

Attribute Value: 210987654321
<Note: This Job Role is also the session role as shown in the person block above>

Attribute Name: nhsBusinessFunctionsCodes

[1 of 1]

Attribute Value: B0050

[2 of 3]

Attribute Name: nhsIDCode

Attribute Value: L81102

Attribute Name: o

Attribute Value: “Taunton Road Medical Centre”

Attribute Name: nhsJobRole

Attribute Value: “Nursing & MW”:”Nurse”:” Community Nurse”

Attribute Name: nhsWorkGroups

[1 of 1]

Attribute Value: “SunnySide Surgery”

Attribute Name: nhsWorkGroupsCodes

[1 of 1]

Attribute Value: L8110200000

Attribute Value: nhsJobRoleCode

Attribute Value: S0030:G0100:R0700
Attribute name: uniqueidentifier

<of the preceding nhsJobRoleCode >

Attribute Value: 1232456789012

[3 of 3]

Attribute Name: nhsIDCode

Attribute Value: “RBA”

Attribute Name: o

Attribute Value: “Taunton and Somerset NHS Trust”

Attribute Name: nhsJobRole

Attribute Value: “Add'l Clinical Services”:” Mental Health”:” Counsellor”

Attribute Name: nhsAreaOfWork

[1 of 1]

Attribute Value: “Clinical Support”:“Counselling”:“Counselling”

Attribute Name: nhsWorkGroups

[1 of 2]

Attribute Value: “Study into Mental Illness In the Young”

[2 of 2]

Attribute Value: “Paediatrics Ward”

Attribute Name: nhsAreaOfWorkCode

[1 of 1]

Attribute Value: P0120:Q1120:T1960

Attribute Name: nhsBusinessFunctions

[1 of 2]

Attribute Value: “Sealed Envelope Control”
[2 of 2]

Attribute Value: “Workgroup Membership Administrator”

Attribute Name: nhsWorkGroupsCodes

[1 of 2]

Attribute Value: RA500028

[2 of 2]

Attribute Value: RMH00055
Attribute Value: nhsJobRoleCode

Attribute Value: S0070:G0370:R1550
Attribute name: uniqueidentifier
Attribute Value: 084983098398
Attribute Name: nhsBusinessFunctionsCodes

[1 of 2]

Attribute Value: B0080

[2 of 2]

Attribute Value: B0090

6.9.7.3 Notes

It must be understood clearly that where there are multiple values for an element (e.g. Area of work), that there is no indication of which name is associated with which code. This does not provide a method to translate from one to the other.
6.9.8 Field Lengths

6.9.8.1 Background

· Many of the fields are variable length.

· Many of the fixed length fields are due for review and changes will be outside the control of BT.

· The LDAP store has no practical limit for data storage and will not truncate data.

· The NHS does not specify a maximum length for variable fields.

· The SAML assertion will not truncate the variable length fields fetched from the SDS LDAP store.

· NHS IG has suggested reasonable maximum field lengths.

· Field lengths for “Organisation” (o) and “Common Name” (cn) still to be determined.

· It is the responsibility of the application developers to make their own judgements on how to handle variable lengths fields. They may wish to use the reasonable maximum field lengths that have been provided by the NHS and should consider how to handle strings that exceed their chosen field length.

· Note that the field lengths shown in this document are not controlled by BT. Any information relating to field lengths is for guidance only.

6.9.8.2 Information Sources
The field lengths specified in this document are taken from:

· Example data provided in Information Governance Programme Role-Base Access Control Requirements (RBAC) (NPFIT NDA GEN IG0252) v6.0. 17th Feb 2004. (Confirmation that this is the up-to-date version required)
· Microsoft Excel Worksheet ESR Staff GroupSub-group and Job Role Codes DRAFT 0.2. (Confirmation that this is the up-to-date version required)
· Organisation Codes Service” http://www.nhs.uk/nacs/.

· http://nww.nhsia.nhs.uk/ocs/pages/coding_practice.asp?om=m1.

· http://nww.nhsia.nhs.uk/ocs/pages/coding_practitioner.asp?om=m1.

6.9.8.3 Field Length Table
	
	Name
	Attribute
	Field Type
	Field Length

	1
	Assertion Version
	ssbAssertionVersion
	Fixed
	6

	2
	Full Name
	cn
	Variable
	TBA

	3
	User’s Unique Identifier
	uid
	Fixed
	12

	4
	OCS Practitioner Code
	nhsOcsPrCode
	Fixed
	8

(under review may increase to 12)

	5
	SSB Session Role Uid
	ssbSessionRoleUid
	Fixed
	12

	6
	SSB Mode
	ssbMode
	Fixed
	1

	7
	NHS Organisation
	nhsIDCode
	Variable
	Typical Max = 12

	8
	Organisation Name
	o
	Variable
	TBA

	9
	Job Role
	nhsJobRole
	Variable
	Typical Max = 188

(3x60+8)

	10
	Areas of Work
	nhsAreaOfWork
	Variable
	Typical Max = 188

(3x60+8)

	11
	Work Groups
	nhsWorkGroups
	Variable
	Typical Max = 40

	12
	Areas of Work Codes
	nhsAreaOfWorkCodes
	Variable
	Typical Max = 17

	13
	Business Functions
	nhsBusinessFunctions
	Variable
	Typical Max = 40

	14
	Work Groups Codes
	nhsWorkGroupsCodes
	Variable
	Typical Max = 17

	15
	Job Role Code
	nhsJobRoleCode
	Variable
	Typical Max = 17

	16
	Role Profile Code
	uniqueIdentifier
	Fixed
	12

	17
	Business Functions Codes
	nhsBusinessFunctionsCodes
	Fixed
	5

6.9.9 SAML Interfaces

There is one main SSB interface for the SAML Service:

· XML/HTTP to SAML Servlet

This is described in the following sections..
6.9.9.1 SAML Servlet

· NASP provides a servlet that:

· Allows both Java and C developers to retrieve a full SAML assertion using XML.

· Avoids the requirement for SAML clients to register with the SAML server.

· Provides all role profile data in a single call.

· Avoids the requirement for discrete requests for separate SAML attributes.
· This section of the document includes examples of Java and C code required to retrieve a full SAML assertion.

6.9.9.2 SAML Servlet Overview

There is a requirement within the Information Governance work on the NHS Spine project to make user role information available to client applications via a SAML Attribute Assertion. Spine delivers this functionality by providing an XML/HTTP interface to a servlet without needing to use the SAML API. This solution is described here.

[image: image9.png]App Server

Idenity Server

(samsewe)

SANLAP]

Role Asserton Serviet

SsBRole
Asserion
Interface

XMUHTTP

Remate Clent Appication
(Relying Party)

Figure 9: SAML Servlet

The RoleAssertion servlet resides within the same application server instance as the Access Manager. It uses the SAML API within the Identity Server SDK to interface with the SAML Service on the Identity Server and generate the SAML Attribute Assertion.

It takes in a token ID as a request parameter. This represents the session token id for the user for whom we wish to get the SAML Attribute Assertion.

The pseudo-code algorithm that the servlet follows is outlined below:

1. Extract the token id parameter from the HTTP request

2. Validate the token id

3. If it is valid, generate a SAML Authentication Query using the SAML API

4. Send the SAML Authentication Query to the SAML SOAP Service in the Identity Server and get back the SAML Authentication Assertion

5. Send the SAML Attribute Query to the SAML SOAP Service in the Identity Server and get back the SAML Attribute Assertion

6. Return the SAML Attribute Assertion as XML over HTTP.

The servlet is the only thing that is talking SAML (using the API) to the Identity Server SAML Service and therefore is the only thing that needs to be configured in the list of the Identity Server's trusted partner sites.
The servlet is therefore providing a wrapper around the SAML Service in Identity Server and provides an easier interface for clients wishing to get Attribute Assertions.
Any client application, whether it is a legacy fat application or a web application, does not need to talk SAML (using the API) to the SAML Service in Identity Server. Instead, all they need to do is programmatically issue an HTTP request to the RoleAssertion servlet, passing the token ID as a request parameter.

Client Applications can then obtain the Attribute Assertion as XML and parse it to retrieve the information that is relevant to them.
There are a number of advantages to this approach.
· Easier interface for client applications.
· Every client does not need to be added to the Identity Server's list of trusted partner sites.

6.9.9.3 Interface Specification

The interface specification is provided below. The interface contract is unchanged compared to the interface of the earlier releases with the exception of a reduced set (subset) of error messages being returned.

The interface specification is as follows:

	Interface Name:
	RoleAssertion (SAML Assertion Servlet)

	Variable (Classes)
	<TokenID>: String (unlimited)

	Message 1
	<SAML Attribute Assertion Response>: Conform to the SAML 1.1 schemas:

oasis-sstc-saml-schema-assertion-1.1.xsd

oasis-sstc-saml-schema-protocol-1.1.xsd

	Message 2
	<Error Response>: Message conform to:

<Response>

<ResponseFault code=”<code>" description="<msg>” />

</Response>

	Method 1:
	<SAML Attribute Assertion Response>/<Error Response> = HTTP GET /saml/RoleAssertion?token=<TokenId>

	Functional Description:
	The ‘RoleAssertion’ interface is offered by the role assertion servlet, which provides a HTTP wrapper around the SAML Service. Token ID is passed as a request parameter. The following steps are performed by this method:

Extract the token id parameter from the HTTP request.
Validate the token id.
If it is valid, generate a SAML Attribute Assertion utilizing XML Beans library.

Create XML representation and return it as XML over HTTP to the client.

	Pre-Condition 1
	User has been authenticated against ID Server
	SSOSession & Token have been created by the Identity Server as part of the SSB authentication workflow.

This also implies that the user has been created along with his organisational roles in the SDS, i.e. the central Spine LDAP directory.

	Pre-Condition 2
	tokenId <> null && tokenId -> valid token
	A <tokenId> referencing a valid token must be presented. The <tokenId> has been created by Identity Server when authenticating the user. It will be passed back to the client and stored in the client side ticket store.

	Post-Condition 1
	No state change; <SAML Attribute Assertion Response> will be returned to the client
	

	Error Condition 1
	Error getting saml.properties file
	SAML Assertion Servlet cannot be initialized. The Servlet will not be operational and a HTTP 404 Error will be sent back to the client.

	Error Condition 2
	Error validating token:
	Code: 1002 Description: Error validating token: <detailed message>

	Error Condition 3
	Error retrieving user name from token
	Code: 1003 Description: Error retrieving user name from token: <detailed message>

	Error Condition 4
	Invalid XML Document
	Code: 1018 Description: Invalid XML Document: <detailed message>

	Error Condition 5
	Error creating SAML Attribute Response
	Code: 1018 Description: Error creating SAML Attribute Response: <detailed message>

	Error Condition 6
	Error creating SAML Attribute Assertion
	Code: 1018 Description: Error creating SAML Attribute Assertion: <detailed message>

	Error Condition 7
	Live Assertion requested for user in Training mode
	Code: 1019 Description: Incorrect mode: <detailed message>

	Error Condition 8
	Training Assertion requested for user in Live mode
	Code: 1020 Description: Incorrect mode: <detailed message>

6.9.10 Sample SAML Client Code

This section can be found in Part 7 of the EIS.
6.10 Client Signing Interface

6.10.1 Overview

In the paper world, people sign documents with a pen, known as a wet signature. Spine enabled applications can use the Content Commitment Service as part of a process to present an electronic document to a user which can then be digitally signed using the user’s smart card and a passcode.

This achieves the functional equivalent of a wet signature. That is, the user commits to the content being signed.
This credential is much the same as a user authentication credential insofar as it is an X.509 digital certificate with an associated asymmetric private key, both of which are stored on the user’s smart card.
The Client Signing Interface runs purely at the client desktop, accessing functions directly on the smart card.

From 2008-A, users are allowed to self-assign a temporary Smartcard while their personal Smartcard is not available; this is called Fallback Assignment. Fallback Smartcards do not have content commitment credentials so this interface will not be available to users who have used Fallback authentication into Spine.
6.10.2 Client Signing Interface API

The Client Signing Interface API available to applications is a subset of PKCS#11 (also known as Cryptoki) which conforms to the RSA Labs PKCS#11 Version 2.01 specification.

The API is provided through a native PKCS#11 C-API and Java API (IAIK – Java wrapper to C-API) as part of the IA Client Distribution. The sample code and documentation for these APIs is provided separately in a Client Signing Development Toolkit.

The recommended Java based interface is via a wrapper from IAIK
.

The native C-API is exposed by the smart card middleware that is part of the SSB Client.

6.10.3 Support and Compatibility
In order to support the goal of interoperability and platform independence both at the application layer and the PKCS#11 middleware layer, applications should only use the interface provided. This interface includes two additional APIs (one for Java and one for C) that sit along side PKCS#11 to select the appropriate middleware which allows for future changes to the middleware without affecting applications.

For this reason, applications should NOT use other methods to access the smartcard (such as via MS CAPI or by directly hooking into the middleware DLL).

It should also be noted that multiple reader and card configurations are supported by PKCS#11. However, for the purposes of P1R2 applications it can be assumed that only one card and reader is present. This assumption is reflected in this document and accompanying examples.

6.10.3.1 PKCS#11 API

The PKCS#11 standard specifies an application programming interface (API), called “Cryptoki,” to devices which hold cryptographic information and perform cryptographic functions. Cryptoki, pronounced “crypto-key” and short for “cryptographic token interface,” follows a simple object-based approach, addressing the goals of technology independence (any kind of device) and resource sharing (multiple applications accessing multiple devices), presenting to applications a common, logical view of the device called a “cryptographic token”.

Cryptoki isolates an application from the details of the cryptographic device. The application does not have to change to interface to a different type of device or to run in a different environment; thus, the application is portable.

Cryptoki Version 2.01 is intended for cryptographic devices associated with a single user, so some features that might be included in a general-purpose interface are omitted. For example, Cryptoki Version 2.01 does not have a means of distinguishing multiple users. The focus is on a single user’s keys and perhaps a small number of public-key certificates related to them. Moreover, the emphasis is on cryptography. While the device may perform useful non-cryptographic functions, such functions are left to other interfaces.

This document provides both a C and Java interface, each operating the same main PKCS#11 primitives.

The Client Signing Interface provides a subset of this interface. These include:

1. Library Initialisation and Termination

2. Slot and Token Management

3. Session Management

4. Object Management

5. Signing

In order to create a digital signature, an application will need to make use of most of the API subset.

The main input to generating a digital signature is based on a hashed value of one or more business messages.
The following APIs are the ones supported by the Client Signing Interface:

	Function
	Description

	C_Initialize
	A general initialisation of the PKCS#11 module that must be called before all other calls

	C_GetFunctionList
	Retrieve a list of functions supported by the token

	C_GetInfo
	Get general information about token PKCS#11 version support

	C_GetSlotInfo
	Retrieve information about the a slot

	C_GetTokenInfo
	Retrieve information about the token within a slot

	C_GetMechanismList
	Retrieve a list of mechanisms supported by a token

	C_GetSlotList
	Look for smartcard in a reader

	C_GetMechanismInfo
	Check to see if the card can support an RSA digital signature

	C_GetAttributeValue
	Retrieve an attribute value for a given attribute

	C_OpenSession
	Open a session to the token

	C_CloseSession
	Close a session to the token

	C_CloseAllSessions
	Close all sessions to the token

	C_login
	Login to the token with a passcode

	C_Logout
	Logout of the token

	C_FindObjectsInit
	Initialise a search for private key objects on a token

	C_FindObjects
	Find the object associated with a private key object stored on the token

	C_FindObjectsFinal
	End of the search for objects

	C_SignInit
	Initialise an RSA signing process with the identified private key object handle

	C_Sign
	Sign the hashed message

	C_SignFinal
	End a signing operation

	C_Finalize
	A general finalisation of a conversation with the PKCS#11 module

6.10.4 Storyboard

To provide some context to the process by which an example application would use the Client Signing Interface, the following storyboard is presented. It is not intended as a definitive statement of application logic, but merely serves to illustrate how the Client Signing Interface could be used within an application.

It must be understood that only steps 5 and 6 of the Storyboard specifically relates to the Client Signing Interface – all other steps are performed by the example application.

Also, the generation of any other digital signature constructs (e.g. XML-DSIG) is also an application responsibility and is outside the scope of this document.

1. The user will be sat at a workstation having authenticated to the Spine with their smart card in the reader. This is user authentication and should not be confused with the requirement for a user to enter their passcode for the purposes of signing, although the same passcode is used.
2. The application workflow requires the user to commit to some content i.e. sign an electronic form.
3. The user is made aware that they are being requested to commit to the presented content and asked to Digitally Sign the form by pressing a ‘Sign’ button.
4. On pressing the ‘Sign’ button, a passcode dialogue appears and the user enters their passcode, which is the same passcode used when authenticating.
5. The application opens a session with the smartcard and locates the appropriate X.509 digital certificate and associated private signing key for the purpose of Content Commitment, retrieving a copy of the public certificate. The criteria for the certificate search should be Issuing Authority DN, DN of holder, Key Usage, and Policy OID. See the pseudo-code below for more details.
6. The application will then generate a hash of the form to be digitally signed and pass it to the smartcard via the Client Signing Interface whereupon a digital signed copy will be generated on the smartcard and passed back to the application. The application should then close the smartcard session.
7. The application will then validate the chain of certificates up to the Spine Root CA. In essence, the application requires a trusted store containing the Spine Root CA certificate and the Sub CA certificate used to issue the Content Commitment Signing certificate. This chain will enable the application to establish that the Sub CA issued the signing certificate
8. The application will validate the user’s SSO Token, the principle being that a valid token can be accepted as confirmation that the user’s smartcard and associated certificates and keys are currently valid at that time.
9. The application will then securely log details about the transaction, which may include information such as date and time, SSO Token validation status and the hash of the transaction.
6.10.5 Signing Process Pseudo-Code
This section shows PKCS#11 Digital Signature Pseudo-code. A full C example is set out in this SSB section API Supplement.

PKCS#11 Digital Signature Pseudo-code

=====================================

A slot is a reader, a token is a card

There is no error processing in this pseudo-code

#

Main inputs:

- Message (to be signed) - this needs to be in the correct format e.g. SHA1

- NHS smart card with a Content Commitment certificate and private key

- Reader for the smart card

#

Main outputs:

- Signed Message

- Content Commitment Certificate

#

Assumptions:

- As soon as we find a card in a reader that is capable of a signature, don't look any futher

- There will be multiple certificates (with associated private keys) on the card

- The Message to be signed is properly formatted message digest

Initialise the PKCS#11 module

Initialise (C_Initialize)

Look for a card in a reader that is capable of doing a digital signature operation

==

For each (slot with a token i.e. a reader with a card in it (C_GetSlotList))

DO

IF token (i.e. card) in slot is capable of signature (C_GetMechanismInfo == CKF_SIGN)

SET Slot Identifier to this slot

ENDIF

DONE

Open a session to the card

==========================

Open a session (C_OpenSession) using Slot Identifier

Login to the card

=================

Login to card (C_Login) using passphrase

Locate the correct private key and associated certificate on the card

===

1. Build a search template for certificates on the card

2. Decode the DER encoded certificates and check to see if the certificate

is the Content Commitment certificate:

- Issuer DN that matches Content Commitment SubCA Subject DN

- Key Usage of Non-Repudiation and Digital Signature

- Policy OID of 1.2.826.0.1275.102.0.3 (a partial match)

3. Retrieve the Key Identifier of the certificate

4. Build private key search template:

- Object class of CKO_PRIVATE_KEY

- Attribute of CKA_SIGN = TRUE

- Key Identifier that matches that of the Content Commitment certificate

5. Retrieve private key object handle

Build certificate search template and retrieve key object handles (C_FindObjects)

For each Certificate

DO

Decode Certificate

IF Decoded Certificate matches Criteria (from above)

SET Content Commitment Certificate to Certificate

ENDIF

DONE

Locate the Key Identifier associated with the Content Commitment certificate (C_GetAttributeValue)

Get the Key Object Handle that matches the Key Identifier (C_FindObjects)

Sign the Message

================

Set Signing Mechanism to CKM_RSA_PKCS

Sign message (C_Sign) using:

- Content Commitment Key Handle

- Signing Mechanism

- Message (to be signed)

- Output: Signed Message

Logout of the card the session

==============================

Logout of card (C_Logout)

Close the session

=================

Close the session (C_CloseSession)

Finalize

========

Finalize (C_Finalize)

6.10.6 Application Responsibilities

The Client Signing Interface is a relatively small part of the overall process of achieving Content Commitment within an application. Most of the responsibility falls on the applications in terms of presenting the content in an appropriate manner, preparing the content for signing, requesting the passcode from the user, signing, validating and then securely logging the transaction.

6.10.7 Single or Bulk Signing

Applications may require a user to sign individual transactions or multiple transactions i.e. different signing models. The signing interface allows for different signing models to suit application needs.

In order to create a signature, the card must be logged in using the user passcode (which the application must prompt the user for). Then, one or more messages can be hashed and signed. However, it maybe that the passcode is required to be entered each time a message is signed.

6.11 –Left Blank Intentionally

6.12 Secure Spine Communications

Communication to and from Spine will be secured such that:

· Only trusted users can access National systems and data.

· Confidentiality and integrity is maintained in transit.

6.12.1 Communication Types

There are a number of different types of communication with the Spine.

Access to clinical systems and data can be categorised as follows:

· Portal Communications

· Synchronous Messages

· Asynchronous Messages

Other types of communications include:

· Access to the security interfaces of the Spine from LSPs or other N3 connected entities.

· SDS access or replication traffic.

· DNS, NTP or other operational traffic.

6.12.2 Communication Security Requirements
The Authority has laid down requirements regarding security of communications, which are interpreted and summarised as follows:

· In all circumstances to secure all interactions between clinical users and the Spine behind strong two-factor authentication.
· All Spine communications will be strongly encrypted where those communications traverse N3/NHSNet and other remote access networks.

· All entities accessing Spine will strongly authenticate to the Spine

· A number of trusted hosts will be permitted to interact with Spine with synchronous and asynchronous messages. These ‘endpoints’ will be strongly authenticated to the Spine.

· Direct user access to Spine portals does not require authentication of the user’s PC or the web proxy service the communication traverses.

· Cryptographic methods employed will be in line with e-gif and other standards specified by the Authority.

· There will be a standards based approach to securing communications.

· Where possible end-to-end communications security will be implemented.

6.12.3 Communications Security Solution

· Access to the Spine will be secured using Transport Layer Security (TLS).

· Where performance, scalability or functionality requirements dictate, IPSEC may be used, with the prior agreement of all parties.

6.12.4 TLS Solution

There are two main security requirements of the TLS solution:

· Provide encryption and integrity solutions for all Spine communications as N3/NHSNet is considered an un-trusted network.

· Authenticate devices that send messages to Spine.

Products from the Cisco SSL/TLS accelerator family have been chosen for this purpose:

· SSL modules for the Content Services Switches (CSS). These will provide the TLS server functionality for Spine portal access. Designed as highly scalable, these devices will handle the 10,000’s portal connections that will come with P1R2.

· Until the 2006-B-2 Spine Release, standalone Secure Content Accelerator (SCA-2) devices provide the additional functionality of mutual authentication for synchronous and asynchronous message communications.
· The SSL modules for the CSS also support mutual authentication for synchronous and asynchronous messaging interfaces, and may be used from the 6-B-2 Spine Release onwards.

· SSL Module for 6500 (SSLM). These modules are based on the SCA-2s and may become part of the Spine TLS infrastructure post 6-B-2.
This solution is based on the following assumptions:

· There is no requirement for machine authentication for portal communications. This is based on the trust model that users will be forced to undergo strong authentication on initial access to the portal and thus authentication of their machine is not required.

· The authentication of remote clients for portal communications will be the responsibility of the LSPs. The Spine will treat remote clients in the same way it treats local LSP clients.

· All applications that will communicate with Spine via messages are compatible with TLS (RFC 2246). Backward compatibility with SSLv3 will be supported only by agreement between communicating parties.
· All applications that will access Spine are capable of implementing the session caching functionality of TLS such that potential scalability or performance issues are minimised within Spine.

· Where outbound asynchronous messages are transmitted by Spine the receiving endpoint can present a TLS interface to which Spine will send that message.
6.12.5 Messaging Security
For illustrative purposes only, the following functional flow describes a typical End Point connection to the Spine:
1a.
A registered endpoint connects to a Spine messaging interface.

1b.
The Spine TLS Infrastructure which hosts the messaging interface forces mutual authentication which means that the endpoint must present it’s TLS certificate.

2.
The Spine TLS Infrastructure undertakes normal TLS/Certificate validation checks, including a CRL Check. If this fails the TLS session is not established.

3a.
If the TLS handshake is successful the Spine TLS Infrastructure extracts the presented certificate and inserts that certificate into a HTTP Header.

3b.
The HTTP message with this additional header is then posted to a HTTP URL representing an internal TMS interface.

4a.
TMS checks that the Client Subject field of the certificate is from the correct branch of SDS, i.e. checks that an End Point Certificate is being presented.

4c.
The Sarvega appliance then undertakes further SASS lookups to ensure the given ASID is registered for the presented MHS and that the interaction type is valid for the sending AS.
5a.
If all checks are passed the message is passed onto the TMS servers located in the application layer.

5b.
If any of the checks fail the message is discarded and an error is returned to the sender. Where appropriate error messages will be carried in the normal messaging acknowledgements.
6.12.5.1 Certificate Revocation Check (CRL)
Step 2 (above) will include a Certificate Revocation Check as part of the establishment of a TLS connection. Any End Point Certificates that are revoked by the Authority using the EPR solution, will be added to the Spine combined CRL and published to the Spine TLS Infrastructure.

This CRL is for Spine use only and will not be made available outside the Spine boundary.

This countermeasure is supported using Firewall rules until the 6-B-2 Spine release and will be integrated with the TLS Infrastructure from 6-B-2 onwards.

6.12.5.2 Messaging Certificate Validation (Simple DN Check)
Step 4a (above) will prevent User certificates from being used to establish connections to the Spine Messaging interfaces.
This countermeasure is supported using Firewall rules until the 6-A Spine release and will be integrated with the TLS Infrastructure from 6-A onwards.

6.12.5.3 Accredited Sender Checks

From 2005-5 Spine release onwards, the TMS infrastructure in Spine reconciles Accredited System ID (ASID) with Interaction ID for the following message types:

Synchronous:
Sender ASID validated only

Recipient ASID is same as Sender ASID

Asynchronous:
Sender ASID validated only

Recipient ASID is same as Sender ASID

Outbound connection based on binding in SDS

Forward Reliable:
Sender & Recipient validated

Forward Express:
Sender & Recipient validated

Access Client

Smartcard Middleware

Provides an interface to allow client side authentication components to access the credentials on the smart card

Token Store

PKCS#11 API

Launch Client

Ticket API

Identity Agent

Smart Card

- CRL

Generates SSO Token/SAML Assertion and stores it in the SAML Authority on the server.

Returns Token ID, Token attributes

Returns User Roles in a SAML Assertion

the card is removed.

access it. Session token is deleted if

an API for applications wishing to

Holds the session token and acts as

URL stored in the client registry.

automatically connecting to the

Initiates the authentication by

Manages the PKI authentication

with the Authentication Server

and forwards the Token ID to the

Token Store.

is held in a browser cookie.

application is web based, TokenID

Token via Sun API. If the

IfeTokenStore. Validates the SSO

Gets TokenID from Token Store via

SSOToken via Sun API

application and validates

Gets TokenID from client

SSOToken via Sun API

application and validates

Receives TokenID from client

forwards TokenID to client.

Receives Token ID from the Identity Server and

Checks certificates against a CRL held on the SDS.

Authenticates users' PKI certificates.

- user information

Client

Application

Security Broker

API

Authentication Server

XML Processor

CA

CMS

Identity

 Server

SDS

Application

Workstation

� ‘The current length of the SSB token is 64 characters and any implementation attempting to use less than this number of bytes to store the token will fail integration test (fail to implement Spine SSO correctly). This may change in the future as we are dependent on third-party software.

1.1 BT/CfH Action

From conversations with Sun Microsystems (who supply the software which creates this field) and suppliers, Connecting For Health has settled on a length of 254 bytes as an absolute minimum field length for forward compatibility.

1.2 Compatibility Advice – Fixed length storage

For those suppliers using programming environments which lend themselves to the use of fixed-length datatypes, the minimum allocated length should be 254 (bytes). This should be corrected in the supplier’s next software upgrade / release.

1.3 Compatibility Advice – Forward Compatibility

Suppliers should implement token length as a variable-length datatype, such as String. This should be implemented in the supplier’s next software release.’

� ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-11/201final/spec/v201.pdf

� http://jce.iaik.tugraz.at/products/14_PKCS11_Wrapper/index.php

© British Telecommunications plc 2009
COMMERCIAL – IN CONFIDENCE
Page 5 of 72

_1231055578.vsd
User

Smart Card

ID Agent

SSB Service

Insert Card()

Create Token

Card Insert Event()

Challenge()

PIN and Live/Training mode

PKCS#7 Object()

Role Prompt

Token ID

Card Removal Event()

Remove Card()

Destroy Token()

Select Default Role

Select Default Role and Mode

User

Client App

ID Agent

SSB Service

Launch app()

Get Token ID()

SSO Token ID()

Validate Token()

Return Token()

Register Listener()

Get Assertion()

SAML Assertion()

Authorisation()

User

Client Desktop

ID Agent

Server App

Launch app()

Get Token ID()

SSO Token ID()

Validate Token()

Return Token()

Register Listener()

Get Assertion()

SAML Assertion()

Authorisation()

SSB Service

SSO Token ID()

Browser

Web App

ID Agent

Set Session Cookie()

Get Token()

Authorisation()

Protected URL()

Get Token ID()

SSO Token ID()

Validate Token()

Return Token()

Register Listener()

Get Assertion()

SAML Assertion()

SSB Service

Applet/Component()

SSO Token ID()

User

SSB Service

App

Get Assertion()

SAML Assertion()

EvaluateDefaultRole()

Authorisation()

DisplayRoles()

RoleSelect()

_1242201042.vsd
User

Client Desktop

ID Agent

Server App

Launch app

Get Token ID

SSO Token ID

Validate Token

Return Token

Register Listener

Get Assertion

SAML Assertion

Authorisation()

SSB Service

SSO Token ID

_1242202131.vsd
User

SSB Service

App

Get Assertion

SAML Assertion

Evaluate Default Role

Select Role

Authorisation

DisplayRoles

_1263645093.vsd
Identity Server

Identity Agent

Client
Application

Server
Application

User

2. PIN

13. getTicket()

Smartcard Reader

14. Token ID

15. Get SSO Token

16. Get SAML
Assertion

3. PIN

5. Signed UID/
PKI Credential

Ticket API

SSO API - C and Java/
SAML SDK or Servlet (XML/HTTP)

7. Verify PKI Credential
Profile Lookup AND Lookup SDS for user role information

4. Check PIN, Issue Signed PKI Credential

6. Signed UID/
PKI Credential

12. Token ID

1. Challenge

9. User roles
10. User selects role

8. User roles
11. Selected role

_1242201254.vsd
Browser

Web App

ID Agent

Set Session Cookie

Protected URL

Get Token ID

SSO Token ID

Validate Token

Return Token

Register Listener

Get Assertion

SAML Assertion

Authorisation

SSB Service

Applet/Component

SSO Token ID

_1242200708.vsd
User

Client App

ID Agent

SSB Service

Launch app

Get Token ID

SSO Token ID

Validate Token

Return Token

Register Listener

Get Assertion

SAML Assertion

Authorisation

_1140329927.doc

/ SSB Service

/ User

/ Health System

/ SmartCard

/ ID Agent

1 : \Access\

2 : \Active Smart Card\

3 : \Create Token\

4 : \TokenID\

5 : \Start Application\

6 : \Get Token ID\

7 : \ Validate Token \

8 : \ Get Assertion \

Process credentials

provided from smart

card (UID,

Signature, Certificate...

Create attribute

assertion. Includes

reference to

assertion with UID

in token

